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NDIC DISCLAIMER  
 

This report was prepared by the Energy & Environmental Research Center (EERC) 
pursuant to an agreement partially funded by the Industrial Commission of North Dakota, and 
neither the EERC nor any of its subcontractors nor the North Dakota Industrial Commission nor 
any person acting on behalf of either:  
 
(A)  Makes any warranty or representation, express or implied, with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of 
any information, apparatus, method, or process disclosed in this report may not infringe 
privately owned rights; or  

 
(B)  Assumes any liabilities with respect to the use of, or for damages resulting from the use of, 

any information, apparatus, method, or process disclosed in this report.  
 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota 
Industrial Commission.  
 
 
EERC DISCLAIMER  
 

LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the North Dakota Industrial Commission and the U.S. Army Engineer Research 
and Development Center – Construction Engineering Research Laboratory. Because of the 
research nature of the work performed, neither the EERC nor any of its employees makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement or recommendation by the EERC. 
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RENEWABLE OIL REFINERY DEVELOPMENT FOR COMMERCIALIZATION 
 
 
PROJECT BACKGROUND 
 
 In 2008, the United States consumed nearly 20 million barrels a day of petroleum 
hydrocarbon products, predominantly in the form of liquid fuels like gasoline, aviation fuel, and 
diesel fuel. Significant interest has developed around alternatives to petroleum-based products 
because of concern about petroleum sustainability and its impact on climate change and national 
security. Increasing worldwide demand has raised concerns about the availability and rising price 
of crude oil in the next few decades. Concern about the climatic impact of anthropogenic CO2 

has spurred interest in renewable liquid fuels with lower life cycle carbon emissions than fossil 
fuels. Lastly, increasing interest in reducing our reliance on foreign countries for greater than 
60% of our petroleum has resulted in increased U.S. government funding for development of 
domestic alternatives to petroleum fuels. 
 
 The University of North Dakota Energy & Environmental Research Center (EERC), under 
contract to the Defense Advanced Research Projects Agency, developed a technology pathway 
for converting renewable triacylglycerides such as crop oil, algal oil, animal fats, and waste 
grease to jet fuel and other liquid fuels. These alternative fuels have chemical and physical 
properties identical to their petroleum-derived counterparts. Unique from traditional trans-
esterification-based biodiesel technologies, the EERC’s catalytic hydrodeoxygenation and 
isomerization (CHI) process yields an oxygen-free hydrocarbon mixture which, when distilled, 
produces renewable versions of naphtha, jet fuel, and diesel that can be fully integrated with 
current U.S. petroleum fuel infrastructure. In addition to being renewable and fungible, 
renewable oil-based fuel produced using the CHI technology contains very low levels of sulfur. 
Sulfur is increasingly being eliminated from petroleum-derived fuels in order to meet strict U.S. 
Environmental Protection Agency (EPA) limits. The sub-ppm levels of sulfur present in CHI-
based fuels provide a significant advantage to petroleum refiners looking for alternatives to 
reducing sulfur content in fuel. 
 
 
PROJECT DESCRIPTION 
 
 Research activities at the EERC have resulted in the production of hundreds of gallons of 
hydrocarbon samples from a variety of waste fats and oils and crop oils, including soybean, 
canola, coconut, cuphea, camelina, crambe, and corn. The primary end product generated via 
CHI from all of these feedstocks has been aviation fuel (JP-8) that complies with Appendix A of 
the military specification MIL-DTL-83133F. However, oxygen-free hydrocarbon produced from 
the CHI technology can readily be converted into any of several petrochemical intermediates 
used to produce surfactants or plastics in addition to gasoline, jet fuel, or diesel. A general block 
flow diagram outlining the CHI process is presented in Figure 1. The process’s three major steps 
are 1) hydrodeoxygenation, 2) isomerization, and 3) distillation. The hydrodeoxygenation step 
feeds crop oil and hydrogen to a hot, pressurized reactor filled with catalyst. Oxygen is removed 
from the crop oil in this step resulting in an oxygen-free hydrocarbon product and produced 
carbon monoxide, carbon dioxide, and water. The hydrocarbon product from Step 1 contains 
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design. Together, these three tasks ensure that the CHI pilot plant will produce specification-
compliant fuels from North Dakota feedstocks, will have predictable plant economics, and will 
operate similarly to laboratory-scale equipment. The process design package delivered by 
WorleyParsons provides process flow diagrams, an equipment list, a total installed cost estimate, 
and other information required for a contractor to bid on construction of the pilot plant. This 
information is included in a separate report being submitted by the EERC to NDIC. 
 

Task 1 – Technology Tailoring for North Dakota Feedstocks  
 

CHI Process Summary 
 
 Crop oils differ from one another in the type and amount of triglycerides that they contain. 
The term triglyceride refers to the molecular structure of vegetable oils and animal fats. 
Vegetable oils differ from each other because of differences in the carbon number of their 
inherent triglycerides and also because of the degree of carbon–carbon bond saturation. A 
triglyceride with all of its carbon–carbon bonds saturated is referred to as a saturated fat. The 
carbon number and degree of carbon–carbon bond saturation in a vegetable oil feedstock affect 
reactor performance and composition of HDO product. A vegetable oil with a large percentage 
of unsaturated carbon–carbon bonds will require a higher hydrogen treat rate and will produce 
more heat inside of the reactor. Additionally, the carbon number of the vegetable oil feedstock is 
directly related to the carbon number of the hydrocarbon product. In other words, a vegetable oil 
feedstock with a high carbon number will produce an HDO product with a high carbon number, 
and a vegetable oil feedstock with a low carbon number will produce an HDO product with a 
low carbon number. Researchers recognized this fact and hypothesized that vegetable oils with a 
higher carbon number would be better suited for producing fuels with higher carbon numbers, 
for example diesel fuel. 
 
 A stepwise illustration of the chemical changes that occur during the CHI process is shown 
in Figures 2 through 4. Canola oil contains C16 and C18 fatty acids, as shown in Figure 2. 
During the HDO step, oxygen is removed. If oxygen is removed via reduction, the resulting 
hydrocarbon has the same number of carbons as the parent fatty acid. If oxygen is removed via 
decarboxylation or decarbonylation, the resulting hydrocarbon has one carbon less than the 
parent fatty acid. The HDO product from canola oil contains pentadecane (C15), hexadecane 
(C16), heptadecane (C17), and octadecane (C18), as shown in the gas chromatograph (GC) 
chromatogram labeled Figure 3. The HDO product is then isomerized to improve cold-flow 
properties through isomerization and cracking reactions. The final isomerized product is shown 
in Figure 4.  
 

Feedstock Opportunities  
 
 A comparison of the fatty acid characteristics including carbon chain composition, 
distribution, and saturation levels for several oils is summarized in Table 1 and illustrates the 
range of oil chemistry that exists in renewable oils. Canola oil, soy oil, and corn oil all contain 
primarily 18-carbon fatty acids. When deoxygenated, these compounds produce straight-chain 
hydrocarbons that fall in the lower middle of a typical diesel fuel carbon distribution, which 
ranges from C10 to C22. Canola oil, soybean oil, and corn oil differ primarily in the extent of  
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Table 1. Renewable Oil Feedstock Fatty Acid Composition 
Feedstock, 
% 

 
C14 

Palmitic 
C16:0 

Stearic 
C18:0 

Oleic 
C18:1 

Linoleic 
C18:2 

Linolenic 
C18:3 

Eicosanoic 
C20:1 

Behenic 
C22:0 

Erucic 
C22:1 

 
C24:0 

 
C24:1 Source 

Beef Tallow 3 24 19 43 3 1      www.scientificpsychic.com 
/fitness/fattyacids1.html 

Camelina  5 3 19 16 38 12  3   www.cyberlipid.org/glycer/ 
glyc0064.htm#top 

Canola  4 2 62 22 10      www.scientificpsychic.com 
/fitness/fattyacids1.html 

Corn  11 2 28 58 1      www.scientificpsychic.com 
/fitness/fattyacids1.html 

Crambe  2 1 17 9 5 3 2 56 1 2 Industrial Crops and 
Products 7 (1998) 231–238 

Waste Oil  31 7 40 19  1  1    
Soy  11 4 24 54 7      www.scientificpsychic.com 

/fitness/fattyacids1.html 
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 Table 2. Analyses of Crude, Degummed, Bleached, and Deodorized Crambe Oils 
Parameter Crude Degummed Bleached Deodorizeda Deodorizedb 
Free Fatty Acid, % (as oleic) 0.39 0.49 0.38 0.20 0.19 
Peroxide, meq/kg 0.03 0.02 0.00 0.00 0.00 
Color: 
Gardner (10 mm) 

11.0 10.9 3.1 3.6 4.1 

L* (0=black, 100=white) 75.99 74.63 92.95 90.68 89.41 
A* (-) green, (+) red 13.42 11.14 −2.83 −1.85 −1.47 
B* (-) blue, (+) yellow 124.87 122.70 15.72 19.48 23.72 
Density (ASTM D4052) 0.9117 0.9111 0.9108 NAc 0.9112 
Water Content, ppm 447 296 736 NA 155 
Total Chloride, ppm <1 <1 <1 NA <1 
Carbon, wt% 78.62 78.57 78.64 NA 78.74 
Hydrogen, wt% 12.13 12.16 12.24 NA 12.21 
Nitrogen, wt% <0.75 <0.75 <0.75 NA <0.75 
Oxygen, wt% by diff. 8.50 8.52 8.37 NA 8.30 
Sulfur, ppm 24.7 17.4 10.2 NA 5.86 
Aluminum, ppm <1 NA NA NA <1 
Arsenic, ppm <1 NA NA NA <1 
Barium, ppm <1 NA NA NA <1 
Beryllium, ppm <1 NA NA NA <1 
Bismuth, ppm <1 NA NA NA <1 
Boron, ppm <1 NA NA NA <1 
Cadmium, ppm <1 NA NA NA <1 
Calcium, ppm 43 0.6 <0.1 NA 1 
Chromium, ppm <1 NA NA NA <1 
Cobalt, ppm <1 NA NA NA <1 
Copper, ppm <1 0.4 <0.1 NA <1 
Iron, ppm 1 0.2 <0.1 NA 1 
Lead, ppm <1 NA NA NA <1 
Magnesium, ppm <1 0.4 <0.1 NA <1 
Manganese, ppm 30 NA NA NA <1 
Mercury, ppm <1 NA NA NA <1 
Molybdenum, ppm <1 NA NA NA <1 
Nickel, ppm <1 NA NA NA <1 
Phosphorus, ppm 78 1.2 <0.1 NA 1 
Potassium, ppm 9 NA NA NA <1 
Silicon, ppm <1 NA NA NA <1 
Silver, ppm 1 NA NA NA <1 
Sodium, ppm 3 0.2 <0.1 NA <1 
Tin, ppm <1 NA NA NA <1 
Antimony, ppm <1 NA NA NA <1 
Titanium, ppm <1 NA NA NA <1 
Vanadium, ppm <1 NA NA NA <1 
Zinc, ppm <1 NA NA NA <1 
Zirconium, ppm <1 NA NA NA <1 
Strontium, ppm <1 NA NA NA <1 
Platinum, ppm <1 NA NA NA <1 
Gallium, ppm <1 NA NA NA <1 
Rhodium, ppm <1 NA NA NA <1 

a 100-gallon deodorizer. 
b 1.5-gallon deodorizer. 
c Not analyzed. 
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Table 3. Preliminary Data on Jet Fuel Samples Submitted by the EERC to AFRL 
 Flash, °C Flash, °C Freeze, °C Freeze, °C 
 JP-8 Specification JP-8 Specification 
Canola Jet 42 >38 −53.6 <−47 
Crambe Jet 39 >38 −53.5 <−47 

 
 

Table 4. Test Results of a Canola- and Crambe-Derived Diesel in Comparison with a 
Typical Winter Diesel 

Test 

Typical No. 2 
Diesel 

(winter blend) 
EERC Canola-
Derived Diesel 

EERC Crambe-
Derived Diesel 

Appearance Clear and Bright Clear and Bright Clear and Bright 
Density, kg/m3 845 772 778 
API1 Gravity 35.9 51.7 50.5 
Cetane Index 43.8 75.3 76.8 
Cloud Point, °F 0 −38 −20 
Pour Point, °F −35 −75 −30 
Distillation (D86), °F    
  IBP2 331 327 335 
  T10 386 389 402 
  T20 412 417 434 
  T30 435 441 463 
  T40 456 464 490 
  T50 476 484 515 
  T60 496 502 536 
  T70 520 516 554 
  T80 547 528 573 
  T90 584 547 596 
  FBP3 653 552 622 
Flash Point, °F (TCC®)4 146 139 146 
Sulfur, ppm 9.8 <3 <3 
Viscosity 2.4 2.0 2.4 
Ash, wt%  <0.001 0.001 
Copper Strip, (3 h at 122°F)  1a 1a 
Water and Sediment  0 0 

 1 American Petroleum Institute. 
 2 Initial boiling point. 
 3 Final boiling point. 
 4 Tag closed cup. 
 
 
 The dynamometer control and data acquisition system enable the engine to be operated and 
evaluated at specific load and rpm set points corresponding to an EPA testing protocol. Along 
with the engine performance data, gaseous emission data including particulate emissions were 
also measured at varying stages of operation. All gaseous emission measurements were 
performed with California analytical instruments emission equipment shown in Figures 11 and 
12. 
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the same amount of power as did the ULSD certification fuel. Overall, the performance of the 
EERC diesel is very similar to that of an ultralow-sulfur diesel certification fuel. 
 

Task 2 – Renewable Oil Refinery Economic Assessment 
 
 The EERC conducted a preliminary economic assessment which was submitted to NDIC 
as a special report on November 1, 2010. Inputs to this economic model have been revised based 
on the completed process design package and associated total installed cost estimate. 
Specifically, capital cost, power requirements, and water requirements have been adjusted to 
reflect a more realistic cost estimate to build and operate a commercial renewable oil refinery.  
  
 The economic model takes into account feedstock cost, capital equipment costs, operating 
and maintenance costs, and financing scenarios. The model was developed using Microsoft 
Excel and calculates plant economics based on user-defined inputs. Model inputs and user 
defined assumptions included the following: 
 

 Annual capacity (58 Mgpy) 
 Crude oil price ($85/bbl)  
 ULSD (ultralow-sulfur diesel) rack price ($2.94/gal)  
 Blend ratio of lower-value fuel component (0–2.37 gal per gal CHI) 
 Value of blending component ($2.18/gal) 
 Feedstock cost ($560/ton–$835/ton) 
 Hydrogen cost ($1.75/kg) 
 Power cost ($0.05/kWh) 
 Heating cost ($10.37/MMBtu) 
 Water cost ($0.067/1000 kg) 
 Catalyst cost ($0.12/bbl) 
 RIN (renewable identification number) value ($1.38/gal)3  
 U.S. inflation rate 
 Labor, maintenance, overhead, insurance costs 
 Financing costs (amount, interest rate, payback time, depreciation rate) 
 Income tax rate 

 
 The capital equipment cost for the 2.9-Mgpy pilot plant design was used to estimate the 
capital equipment cost for a 58-Mgpy commercial plant. The six-tenths rule4 was used for this 
estimation and is commonly used for scaling up equipment costs to a different capacity. The six-
tenths rule is shown in Equation 1 and takes into account the nonlinear relationship between 
increasing capacity and increasing cost. 
     
               [Eq. 1] 
 
 

                                                 
3 The 2011 RINs are trading from $1.36 to $1.40 a gallon. The Jacobsen Biodiesel Bulletin, June 8, 2011.  
4 Turton. Analysis, Synthesis, and Design of Chemical Processes; Prentice Halls: Upper Saddle River, NJ, 2003:  
p. 148, 155. 

=  
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 Where:  A  =  Equipment cost attribute (in this case, annual volumetric capacity) 
 C  =  Purchased cost 
 n  =  Cost exponent (0.6 on average for process plant equipment) 
  a  =  refers to equipment with the required attribute (58 Mgpy) 
  b  =  refers to equipment with the base attribute (2.9 Mgpy) 
 
 The scaled capital equipment cost for the 58-Mgpy plant was used in a spreadsheet 
provided by WorleyParsons to calculate additional direct costs, indirect costs, and engineering 
and management costs. The sum of these costs equaled the total installed cost ($211 M) and was 
entered into the economic model as the amount of financing required to construct a 58-Mgpy 
plant. 
 
 The utility requirements from the pilot plant design were directly scaled on a per-gallon 
basis to estimate the utility requirements of the 58-Mgpy commercial plant. These updated 
values were entered into the economic model. 
 
 Based on these user-defined inputs, the economic model calculated operating revenues, 
fixed and variable operating costs, annual capital cost payments, assets depreciation, net income 
taxes, tax incentives, and yearly cash flow. 
 
 A promising strategy to maximize CHI plant profitability is to upgrade a lower-value 
refinery product through direct blending with CHI fuel. Because of CHI fuel’s extremely low 
sulfur content (<3 ppm), low aromatic content (<1.8 vol%), and high cetane value (green diesel 
typically ranges from 70 to 90), it can theoretically be blended with lower-value products that do 
not meet ULSD specifications and result in a blended fuel that meets ULSD specs. As a result, 
the profit made by selling the blended fuel is greater than what would be made by selling each 
fuel individually.  
 

Sensitivity Analysis 
 
 A sensitivity analysis was conducted to study the effects of blend ratio, capital cost, and 
hydrogen cost on yearly cash flow. Because feedstock cost has an overwhelming effect on yearly 
cash flow, sensitivity analyses were conducted for two cases. Case 1 represented a low-
feedstock-cost scenario and assumed that yellow grease was the feedstock and was available at 
$560/ton.5 Case 2 represented a high-feedstock-cost scenario and assumed that soybean oil was 
the feedstock and was available at $835/ton.6 The price of vegetable oils and waste grease is 
volatile and trends up and down with the price of petroleum. The vegetable oil and petroleum 
values used in this economic assessment were recorded at a common point in time during the last 
year.  
 
 
 
 

                                                 
5 2010 Yellow Grease Price Look-up. www.ams.usda.gov/mnreports/sj_gr210.txt (accessed Oct 2010). 
6 2010 Soy Oil Price Look-up. www.indexmundi.com/commodities/?commodity=soybean-oil&months=60 
(accessed June 2011). 
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with low-value fuel, and RIN credit value had the greatest effect on plant economics. Capital 
cost and hydrogen costs had less of an effect. A breakeven analysis showed that a CHI facility 
can be profitable at low feedstock cost (~$485/ton) even if no fuel blending occurs and no value 
is assigned to the RIN credits generated along with fuel production. On the other hand, an 
expensive feedstock (~$955/ton) can result in profitable plant operation, given a sufficient blend 
strategy and a RIN value similar to today’s RIN value. 
 

Task 3 – Renewable Oil Refinery Pilot Plant Design  
 

Reactor Design and Rate Data Experiments 
 
 Proper reactor design is critical to ensure that the 336-gph pilot plant reactors perform 
similarly to the 0.5-gph laboratory reactors. Heat and mass transfer have the potential to be very 
different when going from the lab scale to the pilot scale. In order to ensure successful scale-up, 
the EERC conducted extensive laboratory experiments and consulted with a reactor design firm, 
Impact Technology Development. Experimental data were analyzed and used to derive a 
mathematical model to predict conversion as a function of catalyst bed length. A kinetic model 
was especially important for designing the HDO reactor because the reactions that occur in this 
reactor are extremely exothermic. Predicting the extent of reaction as a function of catalyst 
length is critical to proper placement of quench zones and proper sizing of the reactor vessel. 
Catalyst life experiments were also conducted and showed that the HDO catalyst maintained its 
activity for >2000 hours, providing strong indication that the CHI process has the robustness to 
provide a commercially viable alternative fuel production pathway. Appendix B describes the 
work that was conducted to assess catalyst stability. 
 
 The EERC, in joint collaboration with WorleyParsons and Impact Technology 
Development, developed experimental designs to gather reaction rate data. The experimental 
apparatus consisted of a feed pump, a feed preheat section, a catalyst-filled reactor, a condenser, 
and a sample collection vessel. Temperature, pressure, flow rates, and catalyst weight were 
varied. Liquid product was analyzed by GC–MS and acid titration to determine conversion of 
triacylglyceride to hydrocarbon and conversion of triacylglyceride to fatty acid, an intermediate 
product.  
 
 The reactor used to collect kinetic rate data was carefully designed to control all 
manipulated variables. The feed for HDO experiments was a mixture of dodecane and canola oil. 
This allowed researchers to vary feed concentration during tests. In order to prevent canola oil 
breakdown to fatty acids at high temperatures, the dodecane was preheated over glass beads to a 
high temperature upstream of the catalyst bed. The canola oil was preheated to a lower 
temperature in a heat-traced feed line before separately entering the reactor. A mixing section, 
consisting of metal packing, was installed just upstream of the catalyst bed to ensure a 
homogeneous, isothermal mixture at the start of the catalyst bed. The entry point of the canola oil 
feed could be moved up or down in the reactor, depending on the size of the catalyst bed being 
tested. A schematic of the experimental reactor used to collect kinetic rate data is shown in 
Figure 23. 
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 The pilot plant site location has not been determined. Initially, the pilot plant was to be 
located at the Tesoro refinery in Mandan, North Dakota; however, during the first quarter of 
2011, Tesoro Mandan announced a $35M plant expansion to boost its petroleum-refining 
capacity by 10,000 barrels a day.10 This expansion is partly due to record oil production in 
western North Dakota. As a result of the newly announced refinery expansion, all of Tesoro 
Mandan’s resources will be focused on completing the expansion effort. At this time, 
construction and operation of a renewable oil pilot plant at the Mandan, North Dakota, refinery 
are impossible; however, Tesoro remains interested in commercial-scale renewable fuel 
production, and a future project may be possible. Accordingly, the renewable oil refinery pilot 
plant design was generalized to enable implementation at any industrial location.  
 
 The pilot plant design basis anticipates that the process equipment, with the exception of 
storage tanks, will be assembled into skids that can be transported by flat-bed trucks. The skids 
are envisioned to bolt together and rest on a prepared earth/gravel bed in order to minimize 
concrete foundation requirements, cost, and schedule impact. Because of the height of reactors 
and distillation columns, however, foundations will be required for these pieces of equipment. 
The pilot plant design assumes that the HDO and ISOM reactor catalysts will require periodic 
replacement, that sorbent beds for gas cleanup will need to be periodically regenerated, and that 
all units in the pilot plant will be operated simultaneously. The design also calls for floating-roof 
storage tanks where vapor pressure dictates.  
 
 Process throughput is based on the ultimate goal of producing a 100,000-gallon sample of 
jet fuel in approximately 5 months. The design canola oil feed rate for the facility is 336 gph. 
The design criterion for producing quality jet fuel product was based on the military’s 
specification for jet fuel (MIL-DTL-83133F Appendix A).  
 
 A total project cost was estimated based on the summation of capital equipment costs, total 
direct costs, total indirect costs, and engineering and management costs. The capital equipment 
cost was based on an equipment list that included equipment data sheets and specifications for 
major pieces of equipment along with price estimations. The total direct costs were calculated 
based on factors multiplied by capital equipment costs. Direct costs included process equipment, 
internals, site preparation, site improvement, concrete, structural steel for platforms, racks and 
supports, building costs, underground piping, above-ground piping, electrical costs, 
instrumentation, insulation, painting, and scaffolding. Indirect costs were estimated based on 
direct costs and included construction equipment costs, overhead costs, and other indirect costs. 
Engineering and management costs were calculated based on multiplying factors by the sum of 
direct and indirect costs. The total installed cost for a 336-gph (192-bbl/day) CHI facility was 
estimated to be $37 M. 
 
 Process flow diagrams (PFDs) were developed for the entire pilot plant, and piping and 
instrument diagrams (P&IDs) were developed for the HDO unit and the ISOM unit. Figure 26 
shows the PFD for the tank farm unit. The tank farm was designed to hold 7 days’ worth of 
canola oil. This equates to a tank volume of 60,000 gallons. The HDO and ISOM products from 

                                                 
10 MacPherson, J. Tesoro Plans $35 million Expansion of Mandan Refinery. The Bismarck Tribune, March 21, 2011. 
www.bismarcktribune.com/news/local/article_52ec198a-53d8-11e0-ad90-001cc4c03286.html (accessed April 
2011). 
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their respective units are stored in intermediate tanks for testing prior to further processing. 
There is also a test tank for process-generated water. This tank serves as a holding point before 
water is released to an outside boundary limit (OSBL) location. In case of high water acidity, the 
process has been designed with a caustic injection system to bring the water’s pH back to 
neutral. A light naphtha storage tank is included in the design to hold light naphtha at pressure 
before releasing it to an OSBL location. Heavy naphtha will be stored in the 10,000-gallon 
heavy-naphtha product tank. Jet and diesel fuel products will be stored in their respective tanks 
for testing prior to being transferred over to the final product tanks for loadout. This design 
includes a quality control component to fuel production and will ensure that fuel products meet 
specifications in a test tank prior to being transferred to product loadout. Assuming 7000-gallon 
tanker truck capacity, three tanker trucks will be loaded with fuel product each day from the pilot 
plant facility under steady-state operation.  
 
 The pilot plant also includes a hydrogen treatment unit. This unit consists of a pressure 
swing adsorption unit (PSA) and compression system that separates hydrogen from nonhydrogen 
gases prior to sending hydrogen to the HDO and ISOM units. The hydrogen treatment unit 
allows the pilot plant to utilize impure hydrogen streams that may be available if the pilot plant is 
collocated at an existing refinery. The PFD for the hydrogen treatment unit is shown in  
Figure 27. 
 
 The HDO unit PFD is shown in Figure 28. This portion of the pilot plant contains the HDO 
reactor and includes cold hydrogen quench and recycled liquid product quench for heat 
management in the HDO reactor. A high-pressure separator and a low-pressure separator are 
included to separate hydrogen, water, and light gases from the hydrocarbon product. 
 
 The ISOM unit PFD is shown in Figure 29. Similar to the HDO reactor, the ISOM reactor 
was designed based on extensive laboratory testing and modeling efforts. The hydrogen feed to 
the ISOM reactor is dried via molecular sieve prior to entering the reactor. Isomerized product is 
cooled and passes through a high-pressure separator and low-pressure separator before going to 
the ISOM product tank.  
 
 The distillation unit PFD is shown in Figure 30. The distillation unit separates the 
isomerized product mixture by boiling point and results in a naphtha stream, a jet fuel stream, 
and a diesel fuel stream.  
 
 The tail gas recovery unit PFD is shown in Figure 31. The tail gas recovery unit captures 
offgas from the PSA regeneration cycle, HDO low-pressure separator, ISOM low-pressure 
separator, and the distillation unit. This gas is then compressed so that is can be sent OSBL.  
 
 A detailed stream catalog was also delivered by WorleyParsons and contains detailed 
information about each numbered process stream. Information in the stream catalog includes 
vapor fraction, temperature, pressure, molar flow, mass flow, mass density, mass heat capacity, 
thermal conductivity, viscosity, actual volume flow, standard gas flow, mass enthalpy, and the 
molecular composition of each stream.  
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Figure 26. 
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Figure 2
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Figure 30. 
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SUMMARY 
 
 Several tasks were completed to support the ultimate project goal of producing a pilot plant 
design biddable package. Two North Dakota-grown crops, crambe and canola, were investigated 
for their suitability as feedstock to a CHI processing facility. The fatty acid profile of crambe 
makes it an ideal crop for maximizing diesel production; however, both diesel and jet fuel can be 
produced from either crambe or canola oil.  
 
 An economic model was developed and showed that the major factors influencing CHI 
plant economics are feedstock cost, blend strategy, and RIN credit value. Capital cost and 
hydrogen cost were also studied but showed less of an effect on overall plant economics.  
 
 Laboratory experiments were conducted to support the reactor design and plant design 
efforts. The data gathered from these experiments was used to design scaled-up versions of the 
HDO reactor and ISOM reactor. These reactors include a heat management scheme based on 
laboratory data and are dimensioned to ensure performance similar to what was observed in the 
laboratory reactors. A balance-of-plant design effort was completed and includes PFDs, select 
P&IDs, a stream catalog, a plot plan, and an estimated total installed cost for the pilot plant 
facility.  
 
 
 
 




