

FULL-SERVICE CONSULTANTS

North Dakota Transmission Capacity Study

Prepared for: North Dakota Transmission Authority

Prepared by: Power System Engineering, Inc.

February 4, 2020

Forward-Thinking Professionals **Helping** Clients and Colleagues **ACHIEVE** Their **Goals**

North Dakota Transmission Capacity Study for the North Dakota Transmission Authority

Authors:

Contact: Peter A. Koegel, P.E.

koegelp@powersystem.org Direct: 763-783-5351 Mobile: 651-269-8940

10710 Town Square Dr. NE, Suite 201 Minneapolis, MN 55449 www.powersystem.org

Tom Butz Laura Couillard Peter Koegel Curt Lyons

Table of Contents

1	Exec	utive Summary	.1
2		e 1: Transmission Capacity Research	
		Generation Interconnection Queue Review	
	2.2 7	Fransmission Expansion Plan Review	.3
		Current Study Review	
3		e 2: Transmission Analysis	
		Steady-State Model Development	
	3.1.1		
	3.1.2		
	3.1.3	Transmission Expansion Planning Modifications	.8
	3.2 S	Steady-State Transmission Analysis	.8
	3.2.1	North Dakota Export Limit	.8
	3.2.2	Available Transmission Capacity	10
	3.2.3	Steady-State Voltage Stability	12
	3.3 I	LMP/Basis Historical Pricing Analysis1	13
	3.3.1	Nodal Average pricing results1	15
	3.3.2		
	3.3.3	Electric Storage Considerations	22
4	Conc	clusion	

Tables

Table 3-1: Added Generation Seasonal Dispatch Modeling Assumptions	5
Table 3-2: Generator Interconnection Queue Total MW Dispatch Additions	6
Table 3-3: Fossil Generation Dispatch	6
Table 3-4: NDEX Available Generation MW Injection Capacity	10
Table 3-5: SPP LMP Nodes	14
Table 3-6: MISO Pricing Nodes	14
Table 3-7: SPP MLC/MCC 2016-2019 Average	
Table 3-8: MISO MLC/MCC 2016-2019 Average	15
Table A-1: MISO Generator Interconnection Projects	27
Table A-2: SPP Generator Interconnection Projects	29
Table A-3: MPC Generator Interconnection Projects	
Table A-4: Generator Interconnection Project Dispatch	
Table A-5: Existing Wind Dispatch	
Table B-6: MISO MTEP19 Active Projects	
Table B-7: MISO MTEP Appendix A Projects (Quarterly Status Report)	
Table B-8: SPP STEP 2019 Q1 Projects	
Table C-9: SPP Defined NDEX Tie Lines	
Table C-10: BEPC Defined North DakotaTie Lines	
Table C-11: BEPC Defined Williston Pocket Tie Lines	40

Figures

Figure 1-1: North Dakota Generation and Transmission Map	1
Figure 3-1: Load & Generation Total by Zone	
Figure 3-2: Summer Peak Load & Generation Totals	
Figure 3-3: NDEX Tie Line MVA Flow Totals	

Figure 3-4: BEPC North Dakota Tie Line Flows	9
Figure 3-5: BEPC Williston Load Pocket Tie Line Flows	
Figure 3-6: Count of Thermal Violations	
Figure 3-7: Select N-1 MVA Flow Totals	12
Figure 3-8: Count of Voltage Violations	
Figure 3-9: Leland Olds MCC/MLC Monthly Duration Curve	
Figure 3-10: Coyote MLC/MCC Monthly Duration Curve	
Figure 3-11: Leland Olds-Big Bend Basis Monthly Off-Peak	
Figure 3-12: Leland Olds-Big Bend Basis Monthly On-Peak	18
Figure 3-13: Leland Olds Groton SPP Basis Monthly Off-Peak	
Figure 3-14: Leland Olds Groton SPP Basis Monthly On-Peak	
Figure 3-15: Coyote to Hoot Lake MISO Basis Off-Peak	20
Figure 3-16: Coyote to Hoot Lake MISO Basis On-Peak	
Figure 3-17: Coyote to Hoot Lake Hourly MISO Basis	
Figure 3-18: Leland Olds to Big Bend Hourly SPP Basis	21
Figure 3-19: Hourly Surplus and Deficits: 30% Wind Replacement	
Figure 3-20: Hourly Surplus and Deficits: 30% Wind Replacement + Storage	
Figure 3-21: Hourly Cumulative Energy Storage Total	
Figure D-1: Leland Olds MLC/MCC Monthly Off-Peak	
Figure D-2: Leland Olds MLC/MCC Monthly On-Peak	.41
Figure D-3: Minot MLC/MCC Monthly Off-Peak	.42
Figure D-4: Minot MLC/MCC Monthly On-Peak	42
Figure D-5: Bison MLC/MCC Off-Peak	
Figure D-6: Bison MLC/MCC On-Peak	
Figure D-7: Oliver MLC/MCC Off-Peak	.44
Figure D-8: Oliver MLC/MCC On-Peak	
Figure D-9: Ashtabula MLC/MCC Off-Peak	
Figure D-10: Ashtabula MLC/MCC On-Peak	
Figure D-11: Coyote MLC/MCC Off-Peak	
Figure D-12: Coyote MLC/MCC On-Peak	
Figure D-13: Hoot Lake MLC/MCC Off-Peak	47
Figure D-14: Hoot Lake MLC/MCC On-Peak	47
Figure D-15: Langdon MLC/MCC Off-Peak	48
Figure D-16: Langdon MLC/MCC On-Peak	
Figure D-17: Coyote to Hoot Lake Basis Off-Peak	49
Figure D-18: Coyote to Hoot Lake Basis On-Peak	49
Figure D-19: Leland Olds MLC+MCC Monthly Off-Peak	50
Figure D-20: Leland Olds MLC+MCC Monthly On-Peak	50
Figure D-21: Minot MLC+MCC Monthly Off-Peak	51
Figure D-22: Minot MLC+MCC Monthly On-Peak	
Figure D-23: Pioneer MLC+MCC Monthly Off-Peak	52
Figure D-24: Pioneer MLC+MCC Monthly On-Peak	52
Figure D-25: Big Bend MLC+MCC Monthly On-Peak	53
Figure D-26: Big Bend MLC+MCC Monthly Off-Peak	
Figure D-27: MISO GRE MLC+MCC Monthly Off-Peak	
Figure D-28: MISO GRE MLC+MCC Monthly On-Peak	54

1 Executive Summary

Power System Engineering, Inc. (PSE) was engaged by the North Dakota Transmission Authority (NDTA) to perform a study assessing the capacity of the North Dakota transmission system.

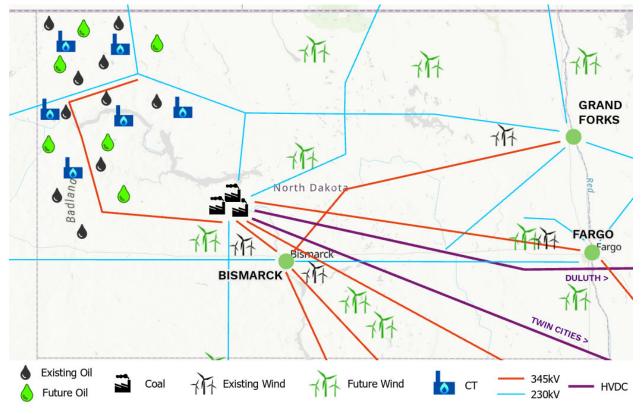


Figure 1-1: North Dakota Generation and Transmission Map

Observations from the study include:

- MISO and SPP Generation Interconnection Requests in North Dakota are greatly outpacing forecasted load growth and transmission expansion projects, utilizing the remaining transmission capacity and driving the need for expensive investment in the North Dakota transmission system.
- Roughly 80% of MISO and SPP Generation Interconnection Projects in North Dakota are unsuccessful due to expensive network upgrades assigned as mitigation, viability of the chosen Point of Interconnection, prospecting, and other reasons not publicly stated.
- Annual load growth in the Bakken Formation is around 1.2%, whereas the rest of North Dakota has a 0.8% annual load growth. Significant numbers of new generation requests and a lack of significant transmission expansion projects are projected to cause increases in power exports from the state along with transmission congestion and generation curtailments.
- AC powerflow analysis shows the number of thermal and voltage violations observed increasing dramatically from 2022 Summer Peak (28 thermal and 230 voltage violations)

to 2026 Summer Peak (2,881 thermal and 228 voltage violations) to 2038 Summer Peak (5,971 thermal and 624 voltage violations).

- Basis/LMP Pricing Analysis demonstrates that 2016-2019 MISO and SPP (MLC/MCC) values are negative in most locations of North Dakota.
- Monthly duration curves show increasing peaks and valleys in the \$/MWHr pricing.
- The on-peak and off-peak basis comparisons of North Dakota generation nodes show both positive and negative historical trends, although the magnitudes in either direction in \$/MWHr is minimal suggesting that there are no prime locations for generator additions based on Basis/LMP pricing signals alone.
- The 30% wind replacement analysis demonstrated that approximately 1,727 MW of additional wind generation would be required in order to provide the annual energy production of 5,600,000 MWh that would replace the assumed future retirement of a theoretical 900 MW of coal generation. This was an energy production and hourly load curve analysis performed outside of the transmission power flow models.
- The energy storage required to make this amount of wind energy fit into the system dispatch required a maximum charging capacity of over 831 MW and a maximum discharge output of over 1,831 MW. The total amount of energy storage required on the system for the 2018 analysis is 560,000 MWh. Transmission upgrades were not considered in lieu of energy storage for this analysis.
- North Dakota's transmission system is nearing full utilization of its existing capacity. Without the addition of significant new extra-high voltage (EHV: 345kV – 765kV) and high voltage (HV: 100kV – 345kV) AC and/or HVDC transmission capacity in the next 10-20 years, we expect fewer and fewer new generation interconnection projects to be built, the risk of voltage instability within the region to increase, and LMP pricing for existing generation to continue to decrease as transmission congestion continues to increase for generation exports out of the state into the regional MISO and SPP markets.
- Other study efforts looking at possible futures of significant renewable energy penetrations and robust transmission overlays including North Dakota are underway. One of these studies is the CapX2050 Transmission Vision Study¹.

¹ <u>http://www.capx2020.com/</u>

2 Phase 1: Transmission Capacity Research

2.1 Generation Interconnection Queue Review

Any new generation planned for North Dakota will be studied under the MISO, SPP, or Minnkota Power Cooperative (MPC) GI processes. These processes are conceptually similar but differ in key details. They were all initially based on the FERC pro-forma tariff, but have evolved over time to meet the needs of each organization as they respond to an unprecedented level of new Generator Interconnection Requests (GIR).

All three utilize group studies to process interconnection requests received as of a certain date. These studies are coordinated between MISO, SPP, and MPC, as well as other neighboring Independent System Operators (ISO), Regional Transmission Operators (RTO), and TOs, in order to establish a "queue priority" for each study group. This queue priority is used to allocate network capacity and identify cost responsibility for any network upgrades identified during the GI study process.

In total, as of September 1, 2019, there were 86 projects representing 11,666.6 MW summer, 11,690.6 MW winter of new generation within these GI Queues. Of these, 31 (2,964.4 MW Summer, 2,988.4 MW Winter) projects are in service; two (450 MW) projects are under construction or proceeding towards construction; and 53 (8,252.2 MW) projects are under study in the MISO, SPP, or MPC GI processes.

In MISO, we identified 21 In-Service projects, one Under Construction project, and 26 Active projects. A detailed list of these projects is provided in Table A-1. In SPP, we identified one In-Service project, one project with an Executed GIA, and 20 Active projects. A detailed list of these projects is provided in Table A-2. In MPC, we identified seven In-Service projects and seven Active projects. A detailed list of these projects is provided in Table A-3.

The GI study process is designed to identify any system upgrades required for the Bulk Electric System to operate safely and reliably with these proposed new generation projects interconnected. Any upgrades to the transmission system in North Dakota required for GI projects would be added to future versions of the applicable Transmission Expansion Plan (TEP).

2.2 Transmission Expansion Plan Review

PSE completed reviews of the MISO Transmission Expansion Plan (MTEP) Active Project list (as of April 15, 2019), the MTEP Appendix A Status Report (as of April 15, 2019), and the SPP 2019 Q1 Project Tracking Portfolio to identify local transmission projects that could impact power flows in North Dakota. MPC uses the MTEP process for its TEP projects. Thus, any projects submitted by MPC would be included in the MISO TEP review.

The MTEP19 Active Project list includes 18 Appendix A or B projects located in North Dakota. A few of these projects upgrade the 230kV network to accommodate new generation. It is expected that the estimated \$5.7M 230kV network upgrades will only accommodate the new generation already approved for interconnection and not provide any significant increase in available capacity for the North Dakota network. The remaining \$81.6M "Bottom Up" projects upgrade aging

infrastructure or retire cap banks due to the evolving transmission system. The details of these 18 projects are provided in Table B-6.

The MTEP Appendix A Quarterly Status report (through April 15, 2019) includes 15 Appendix A projects from MTEP11 through MTEP18 located in or near North Dakota. Three of these projects are in-service, one is under construction, and the remaining 11 are planned to be completed in the near future. The details of these 15 projects are provided in Table B-7.

The SPP Transmission Expansion Plan (STEP) 2019 Q1 Project Tracking Portfolio includes nine projects located in North Dakota. Of these, six projects were in service by 2017. There are two new 115kV lines and four 115kV substation upgrades scheduled to be completed in the near future. The details of these projects are provided in Table B-8.

2.3 Current Study Review

In the past, MISO and SPP have occasionally performed specific studies to identify capacity issues and "bottlenecks" on the bulk electric system in various areas, including North Dakota. More recently, the periodic GI and annual TEP reliability studies have served this role. We did not identify any additional recent North Dakota transmission system studies that needed to be included in our review.

Observations and Conclusions drawn from the reviews discussed above were used to develop the scope of the transmission analysis performed in Phase 2 of the study.

3 Phase 2: Transmission Analysis

3.1 Steady-State Model Development

PSE used the following five PSS/E transmission power flow models for this analysis:

- MISO MTEP16 2021 Spring Light Load (21SLL)
- SPP 2017 Series 2022 Summer Peak (22SUM)
- MISO MTEP16 2026 Summer Peak (26SUM)
- SPP 2017 Series 2027 Winter Peak (27WIN)
- PSE Developed 2038 Summer Peak (38SUM)

PSS/E power flow models represent a single point in time, such as the peak hour in Summer for the Summer Peak model. Under these assumptions, the generator dispatch represents a capacity rather than a load factor.

3.1.1 Generation Dispatch

Many of the in-service North Dakota projects identified during the GI queue review have been inservice for years, with some dating back to the early 2000's. For the purpose of our analysis, we assumed that these projects are included in the study models. Projects identified as Under Construction or with an Executed Generator Interconnection Agreement (GIA) were confirmed to be modeled and left at the dispatch level modeled.

For Active projects, historically, we have seen less than 40% of the megawatts requested in the MISO and SPP GIR processes complete the Generator Interconnection Process (GIP) and sign a GIA; during recent study cycles, this percentage appears to be declining. Due to the large number of Active North Dakota GIRs in the MISO, MPC, and SPP queues, we modeled 20% of the megawatts from these GIRs rather than making assumptions about which individual projects might complete the process.

New generation added to the study models was sunk to the respective ISO/RTO/TO footprint and dispatched in each season based on the seasonal dispatch percentages of nameplate listed in Table 3-1 and then further reduced to 20% of those MWs. In addition, they were modeled with a 1.02 per unit voltage schedule at the Point of Interconnection (POI) and 95% power factor reactive power capability. Any proposed projects tapping a transmission line were modeled at a line-tap at the mid-point (50%) of the line.

Sp	Spring Light Load			Summer Peak			Winter Peak		
Gas	Solar	Wind	Gas	Solar	Wind	Gas	Solar	Wind	
0%	0%	90%	100%	50%	15.6%	0%	50%	30%	

The GIR projects located in North Dakota were dispatched in the transmission system power flow models based on the fuel type dispatch listed in Table 3-1 and the In-Service date listed in their respective queues. The industry standard cutoff dates for modeling are as follows:

• 2021 Spring Light Load Projects prior to April 15, 2021.

- 2022 Summer Peak Projects prior to July 15, 2022.
- 2026 Summer Peak Projects prior to July 15, 2026.
- 2027 Winter Peak Projects prior to January 15, 2028.

The MISO, MPC, and SPP GI Queues reviewed for this analysis do not contain any projects with In-Service dates in North Dakota beyond 2023. Thus, to represent a 38SUM model, all generation in the study area (including prior-queued generation) was increased at an assumed annual rate of 3%. Based on these assumptions, the total MW of generation dispatched from GI queue projects not yet in-service in each study model are shown in Table 3-2. The details of the projects added and their corresponding dispatch level are provided in Table A-4. Existing North Dakota wind generator dispatch data is provided in Table A-5.

Table 3-2: Generator Interconnection Queue Total MW Dispatch Additions

ſ	21SLL	22SUM	26SUM	27WIN	38SUM
	1297.9	409.2	678.1	769.1	944.9

In addition to GI projects, PSE discussed fossil fuel generators and their dispatch levels with NDTA and several local TOs. Based on these conversations, the fossil units were dispatched in each of the study models as shown in Table 3-3.

Stanton was recently retired and was removed from the study models. Heskett Units 1 & 2 are also changing fuels during the time period of our analysis. However, we did not explicitly model this change in our analysis.

	218	LL	228	UM	268	UM	27V	VIN	38SUM
Generator	Bench	Study	Bench	Study	Bench	Study	Bench	Study	Study
Coal Creek Unit 1	224.7	224.7	610.1	610.1	610.1	610.1	610.1	610.1	610.1
Coal Creek Unit 2	345.0	345.0	617.0	617.0	617.0	617.0	617.0	617.0	617.0
Stanton	0.0	0.0	202.9	0.0	202.9	0.0	202.9	0.0	0.0
Center Unit 2	246.0	270.0	493.0	493.0	493.0	493.0	493.0	493.0	493.0
Center Unit 1	120.0	151.0	274.0	274.0	274.0	274.0	274.0	274.0	274.0
Antelope Valley Unit 1	465.0	465.0	465.0	465.0	465.0	465.0	465.0	465.0	480.0
Antelope Valley Unit 2	465.0	465.0	465.0	465.0	465.0	465.0	465.0	465.0	480.0
Leland Olds Unit 1	120.0	140.0	212.0	212.0	212.0	212.0	212.0	212.0	230.0
Leland Olds Unit 2	343.7	343.7	387.8	387.8	428.0	428.0	387.8	387.8	475.0
Coyote	300.0	300.0	453.0	453.0	453.0	453.0	453.0	453.0	453.0
Total Fossil Dispatch	2629.4	2704.4	4179.8	3976.9	4220.0	4017.1	4179.8	3976.9	4112.1

Table 3-3: Fossil Generation Dispatch

Total Fossil Dispatch 4179.8 4220.0 3976.9

3.1.2 Load Growth

The load levels in the near-term and mid-term study models were set by Local Balancing Authorities (LBAs), TOs, and/or RTOs. Thus, PSE did not modify the load levels in these models.

To represent a 38SUM model, PSE created two load zones; the Williston Load Pocket and Outside the Williston Load Pocket. These zones encompass North Dakota and the electrical connections surrounding North Dakota. After discussions with NDTA and North Dakota Utilities and referencing the Power Forecast 2019 report², the load growth assumptions within the Williston

² BARR Engineering Power Forecast 2019: Williston Basin Oil and Gas Related Electrical Loa Growth Forecast, http://www.nd.gov/ndic/ic-press/Power%20Forecast%202019.pdf

Load Pocket were established at an annual rate of 1.18%, and load growth assumptions outside of the Williston Load Pocket were established at an annual rate of 0.78%. The overall load and generation totals included in each of our seasonal study models are represented in Figure 3-1.

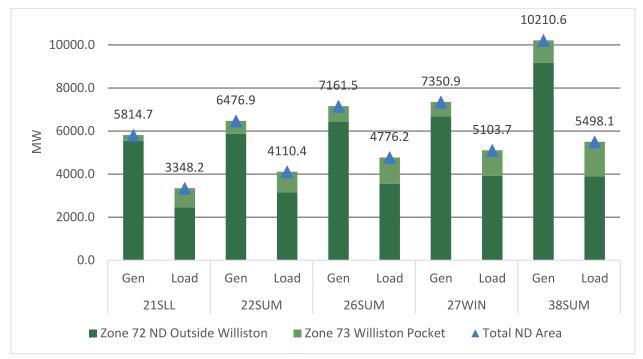
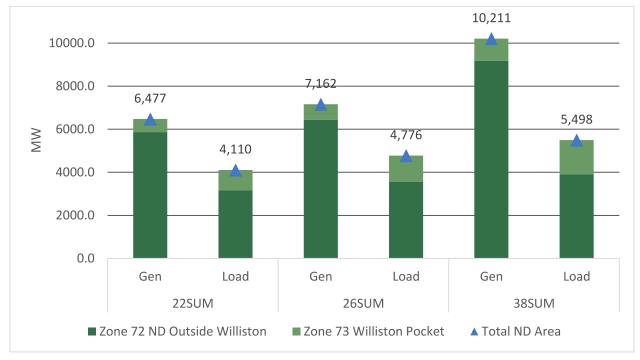



Figure 3-1: Load & Generation Total by Zone

A comparison of the summer peak study models load and generation totals is provided in Figure 3-2.

7

North Dakota Transmission Authority Power System Engineering, Inc.

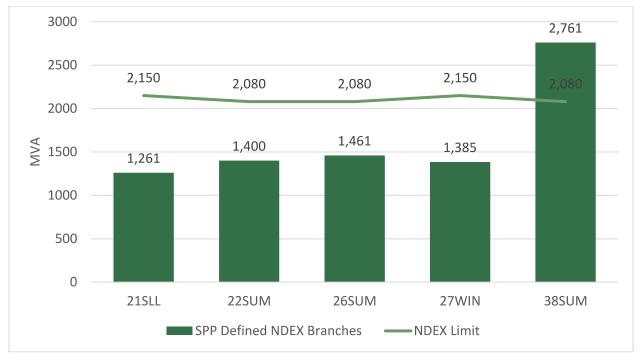
3.1.3 Transmission Expansion Planning Modifications

The MISO and SPP TEP reports did not identify any major North Dakota transmission expansion projects to be added to the study models. However, after discussions with NDTA, the following TEP projects were added.

- MTEP ID 15144: moved a 40MVAR capacitor bank modeled at the Bison 230kV bus to the Square Butte East 230kV bus.
- MTEP ID 15723: reduced the Prairie 115kV switched shunt from 12x40MVAR to 6x40MVAR. Recent MISO DPP studies have indicated that modifying this capacitor bank causes voltage issues in North Dakota. Therefore, the full capacitor bank size could be considered as mitigation should voltage issues arise.
- MTEP ID 15737: removed the Sheyenne 115kV switched shunt from the models. Recent MISO DPP studies have indicated that removing this capacitor bank causes voltage issues in North Dakota. Therefore, including this capacitor bank could be considered as mitigation should voltage issues arise.
- STEP PID 31032: added the Plaza 115kV substation, capacitor bank, and a transmission line to the Blaisdell 115kV substation to the MISO 21SLL and 26SUM models. The 115kV transmission line and capacitor bank were added based on the data for these facilities in the SPP models.
- STEP PID 31033: upgrade the Berthold to Southwest Minot 115kV transmission line in the MISO 21SLL and 26SUM models based on the data for these facilities in the SPP models.

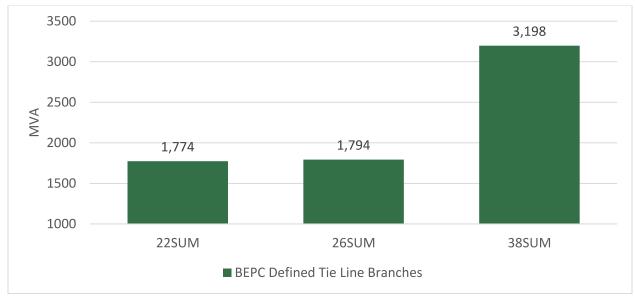
Although these planned TEP projects were added to the study models, the purpose of this study did not include proposing transmission upgrades, new transmission lines, or providing estimated costs of a transmission build-out.

3.2 Steady-State Transmission Analysis

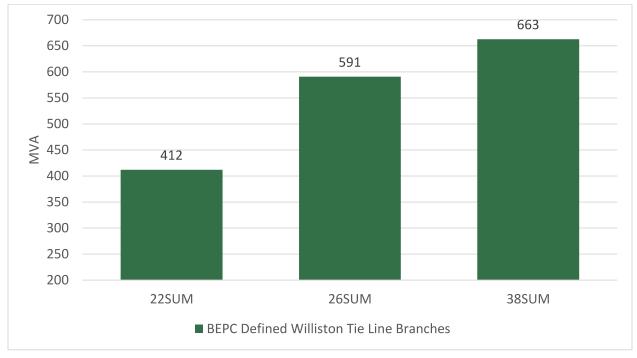

For each of the five power flow models developed, PSE performed a PSS/E AC Contingency Calculation (ACCC) and a PSS®MUST Transmission Interchange Limits Calculation (TLTG) analysis on the North Dakota system to compare the flows and loadings on all bulk electric transmission facilities. These analyses focused on the North Dakota Export (NDEX), which has historically provided a benchmark for voltage stability in the region.

3.2.1 North Dakota Export Limit

Several North Dakota tie line transmission lines, including the NDEX facilities³ (see Table C-9), were monitored under system intact conditions in order to compare the potential available capacity in each model. Although NDEX is a stability interface generally monitored for voltage stability, we used its definition as a way to monitor power flow on familiar North Dakota transmission facilities to demonstrate any trends. In Figure 3-3 below, NDEX totals approximately 60% - 70% of the established stability rating in the near term and five-year out models. However, once the load and generation growth assumptions are applied for the 38SUM model, we see that NDEX


³ NDEX Facilities as defined in SPP's Flowgate report as of August 15, 2019, <u>https://www.oasis.oati.com/SWPP/index.html</u>

increases to 132.7% of the currently established summer peak stability rating. The excessive flow on this stability limit indicates that significant voltage instability could be observed and new transmission facilities would be required to accommodate the addition of new generation.


Basin Electric Power Cooperative (BEPC) provided a list of facilities (see Table C-10) that define the North Dakota tie lines. We used this set of tie lines as another way to monitor power flow on North Dakota transmission facilities to demonstrate any trends. The total MVA flow of these facilities under system intact conditions in the summer peak study models are illustrated in Figure 3-4.

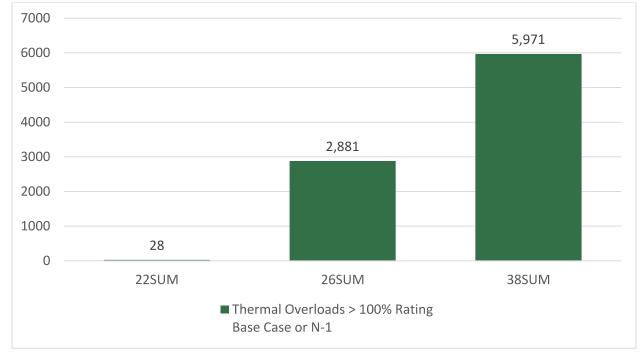
9

North Dakota Transmission Authority Power System Engineering, Inc. In addition, BEPC also provided a list of the Williston Load Pocket tie lines (see Table C-11). The total MVA flow of these facilities for system intact conditions in the summer peak study models are illustrated in Figure 3-5.

Figure 3-5: BEPC Williston Load Pocket Tie Line Flows

The increased power flows on the North Dakota tie lines and Williston Load Pocket tie lines are another indication that transmission capacity will be exhausted by new generation additions and contribute to additional curtailment, lower LMPs, or both without the investment in additional transmission capacity in North Dakota.

3.2.2 Available Transmission Capacity


PSE also performed a PSS®MUST transfer limit analysis to determine the amount of transfer capacity that could be available in each of the study models under system intact conditions prior to NDEX exceeding its established limits. The estimated available capacity is provided in Table 3-4.

Monitored Element	Contingency	21SLL	22SUM	26SUM	27WIN	38SUM
NDEX	Base Case	1323.3	1898.4	1811.3	2626.9	(429.2)

Table 3-4: NDEX	X Available	Generation	MW	Injection	Capacity
-----------------	-------------	------------	----	-----------	----------

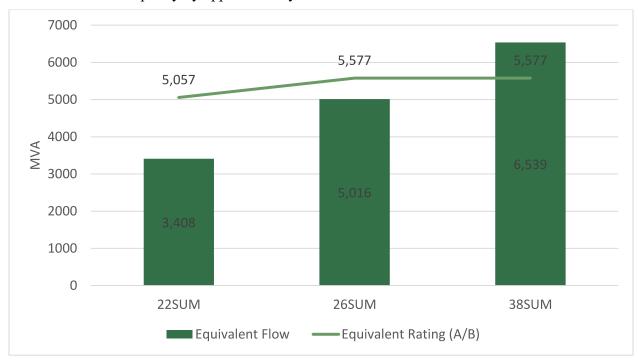
The results of the transfer limit analysis demonstrate the limited capability of exporting North Dakota generation to the MISO and SPP capacity and energy markets. We see limited injection capacity reported in the near-term 21SLL model, where transfers are higher due to low local demand. In comparing the summer peak models, we see available injection capacity starting to fall between 2022 and 2026. By 2038, NDEX has negative injection capacity. This indicates the excess generation above serving the local North Dakota summer peak load has nowhere to go and would likely need to be curtailed to maintain voltage stability. The increase in generation curtailments and further depression of LMPs in North Dakota will continue without the addition of significant

EHV and HV AC and/or HVDC transmission lines between North Dakota and the MISO and SPP load centers.

In addition, the results of the 38SUM PSS/E ACCC analysis identified nearly 6,000 instances of thermal overloads on the North Dakota transmission system, as shown in Figure 3-6.

As expected, the near-term 22SUM model demonstrates a relatively healthy steady-state transmission system in North Dakota. As generation and load increase from the 22SUM to 26SUM, the number of instances of thermal overload violations increases one hundred-fold from 28 to 2,881. Continued increases in generation and load in the 38SUM model beyond the normal transmission expansion planning period demonstrates another doubling of the number of thermal overload violations observed under system intact and N-1 contingency scenarios. With few planned transmission upgrades, these results demonstrate that more transmission capacity is needed to maintain a healthy transmission system in North Dakota.

To illustrate how the capacity in North Dakota decreases over time, PSE compared the thermal loading in the study models on the following 115kV, 230kV, and 345kV transmission lines that were reported as exceeding their limits in the 38SUM model.


- Buffalo Jamestown 345kV
- Merricourt Wishek 230kV
- Mound City Glenham 230kV
- Heskett Wishek 230kV
- Sheyenne Audubon 230kV
- Stanton Square Butte 230kV

- Barr Butte Granora 115kV
- Barr Butte Strandahl 115kV
- Beulah Mandan 115kV
- Bismark Expressway East Bismark 115kV
- Coyote Westmoreland Portable 115kV

- Culbertson Poplar 115kV
- Devils Lake SE Sweetwater 115kV
- Dickinson Green River Westmoreland Portable 115kV
- G8 Patentgate 115kV
- Grand Forks Falconer 115kV
- Grenora Snake Butte 115kV
- Killdeer Killdeer Pumping 115kV
- Langdon Sweetwater 115kV
- Leeds Penn 115kV
- Mont Strandahl 115kV

- Oakdale Killdeer 115kV
- Pioneer Station Snake Butte 115kV
- Pleasant Lake Leeds 115kV
- Pleasant Lake Rugby 115kV
- Rugby Tap Rugby 115kV
- Stanley Tioga 115kV
- Stateline Judson 115kV
- Stateline Mont 115kV
- Stateline Pioneer Station 115kV
- Towner Botno 115kV
- Williston Mont 115kV

Figure 3-7 illustrates that approximately 32% of the capacity on these transmission lines is available in the near term (22SUM) study model. By 26SUM, the available capacity on these transmission lines drops to 10%. Then, in the 38SUM study model, the power flows on these lines exceed their rated capacity by approximately 17%.

Figure 3-7: Select N-1 MVA Flow Totals

3.2.3 Steady-State Voltage Stability

In addition to monitoring thermal violations, PSE also monitored the system buses exceeding normal voltage operating criteria (0.95 per unit to 1.05 per unit). Figure 3-8 illustrates an increase in the number of potential voltage violations observed in the summer peak models.

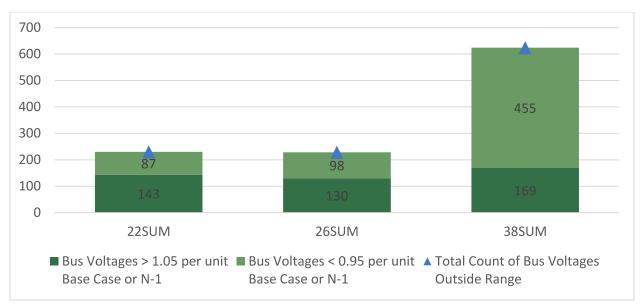


Figure 3-8: Count of Voltage Violations

This increase alludes to a decrease in voltage stability, especially in the 38SUM study model. Voltage criteria violations occur three times more frequently in the 38SUM study model than in the 22SUM or 26SUM study models. The analysis also has an increase in "blown cases", which are simulations not solving likely due to low voltages. While this points to voltage instability that could lead to cascading transmission system outages, our analysis was inconclusive with respect to voltage stability. Additional analysis outside the scope of this study would need to be performed on specific scenarios and system conditions in greater detail to quantify the limits of voltage instability in North Dakota or the NDEX stability flowgate.

3.3 LMP/Basis Historical Pricing Analysis

Historic pricing analysis provides a means to show the combined impacts of congestion and system losses. This analysis can provide an indicator of system adequacy using pricing as the metric. The historic information is available for all hours of the year and a wide range of physical locations. Pricing data can also provide a means of showing changes year over year during periods of changes in generation additions and transmission improvements.

The typical renewable energy expansion pattern is for as many renewable generation additions to be interconnected within the capacity of recent transmission improvements until the time when more major transmission improvements are needed for new renewable generation additions. The expectation in congestion and loss analysis is that the levels of congestion and losses on the system are increasing as shown by the pricing data until the point when more extensive transmission investments need to be made on the system. Year over year differences in pricing metrics can provide insights into which areas are more highly congested. Pricing metrics can also be helpful in comparing areas with higher and lower levels of renewable generation additions.

The Locational Marginal Pricing (LMP) is comprised of three components and is specific to each pricing node on the system. The Marginal Energy Component (MEC) is the same for all locations in the RTO and is defined as the marginal cost of energy based on all available generation on the system without regard to losses or congestion. The Marginal Loss Component (MLC) is defined

as the pricing component demonstrating the impact of higher generation levels on the system losses. A positive MLC at a node indicates that an increased level of generation increases losses at that node. The Marginal Congestion Component (MCC) is defined as the pricing component showing the impact of system congestion for generation at a specific location. For a location with more generation available than transmission outlet capacity, the MCC is typically a negative value, driving down the price signal for generation located in that area on the system.

PSE evaluated a number of nodes in SPP and MISO in order to determine the historic levels of congestion and losses on the system. North Dakota has nodes in both SPP and MISO; pricing at nearby SPP and MISO nodes was also compared, as their pricing models are independent. Table 3-5 lists the SPP LMP nodes evaluated.

SPP Nodes	Description
Leland Olds	Key Generation node on 345kV system
Minot Wind	Wind Generation Node on lower voltage system
Pioneer	Western North Dakota oil load and location generation
SPP-GRE	SPP border to GRE in MISO
SPP-MDU	SPP border to MDU in MISO
Groton	Node south and east of Leland Olds on the 345kV system
Big Bend	Node south of Leland Olds in SPP on the 345kV system

 Table 3-5: SPP LMP Nodes

Leland Olds is a key SPP node to evaluate because it is located in a region with a large amount of wind generation, and also demonstrates the pricing differences within the SPP, when compared with the Big Bend and Groton nodes. Coyote is a MISO pricing node that is in close electrical proximity to the LeLand Olds node and provides a location to compare the MISO and SPP pricing profiles.

The Minot wind node will show congestion and losses in an area that has some wind generation and is not located on the 345kV system. Pioneer is a key node to evaluate the congestion and losses in the western area of North Dakota that is not as likely to have wind generation and is located where the oil production has greatly impacted the energy and demand requirements with associated generation.

For the MISO nodes, Bison Wind is a key node near Leland Olds that allows an evaluation of congestion and losses in an area that has a fairly high level of wind generation. Langdon is also a node that was chosen to show the congestion and losses in the northeast region of the state. Ashtabula was chosen in order to evaluate congestion and losses in the east central area of the state. Coyote and the Otter Tail Power Company (OTP) Hoot Lake nodes were chosen in order to evaluate the MISO pricing differences (basis). Table 3-6 lists the pricing nodes evaluated in MISO.

MISO Nodes	Description
Coyote	Key Generation node on 345kV system adjacent to Leland Olds
Hoot Lake	Node on 115kV system tied to North Dakota Export
Bison Wind	Wind Generation Node in central North Dakota
Oliver Wind	Wind Generation Node in central North Dakota
Langdon Wind	Wind Generation Node in northeast North Dakota
Ashtabula Wind	Wind Generation Node in east central North Dakota

Table 3-6: MISO Pricing Nodes

Since there isn't a dataset for generation or load that is available to weight the pricing, this data is evaluated on a non-weighted basis. The combination of MLC and MCC is shown in many of the results, as this is the combined impact of the two components of the LMP that vary due to transmission system capabilities. Pricing data was evaluated monthly for the on-peak (7 am -10 pm Monday - Friday) and off-peak periods. Trends for 2016 -2019 were evaluated for SPP and MISO nodes, with additional 2011 -2015 historical pricing data available for MISO nodes.

3.3.1 Nodal Average pricing results

Monthly on- and off-peak MLC + MCC (MLC/MCC) pricing was evaluated for all SPP and MISO nodes in order to compare and contrast the congestion and losses over time, and by location. The MLC/MCC pricing was first evaluated from year to year for a given month and period, and then compared to areas with varying levels of wind development. Monthly MLC/MCC bar charts for each of the SPP and MISO nodes are illustrated in Figure D-1 through Figure D-28.

Results show that there isn't a prevailing trend of pricing changes year over year across all 12 months. There are variations from year to year that are likely driven by shorter term changes on the system rather than permanent transmission additions or generation changes. In order to summarize the MLC/MCC in a meaningful way, an average value for the 2016 - 2019 period based on the monthly values has been compiled for SPP nodes in Table 3-7 and for MISO nodes in Table 3-8.

Node	On-Peak \$/MWHr	Off-Peak \$/MWHr
LeLand Olds	(3.52)	(3.35)
Minot Wind	(2.21)	(2.03)
Pioneer	(0.97)	(0.72)
Big Bend	(4.44)	(3.58)
GRE MISO	0.64	0.69

Table 3-7: SPP MLC/MCC 2016-2019 Average

Node	On-Peak \$/MWHr	Off-Peak \$/MWHr
Bison	(8.10)	(6.12)
Oliver	(7.85)	(5.93)
Coyote	(8.07)	(6.02)
Langdon	(8.19)	(6.35)
Ashtabula	(5.99)	(4.88)
Hoot Lake	(4.88)	(3.75)

Table 3-8: MISO MLC/MCC 2016-2019 Average

There is a unique opportunity to compare the Coyote and Leland Olds MLC/MCC, as these nodes are electrically very close to each other, but are in MISO and SPP, respectfully. MLC/MCC values for Coyote are quite a bit more negative than Leland Olds, which would normally indicate that the congestion and losses are more extreme at Coyote than at Leland Olds. This doesn't make sense from a system planning perspective, and upon further analysis which includes the full LMP pricing (which includes the MEC component of the LMP), the two nodes are quite similar. An important conclusion to note is that it is valid to compare nodes within an RTO when evaluating the amount of congestion and losses, as driven by higher levels of renewable generation, but not to compare nodes between RTOs.

Looking closer at the results for SPP nodes in North Dakota, it is clear that the nodes for Leland Olds and Minot are much more negative than the SPP Pioneer or the SPP GRE-MISO node, which

is an indication of having a higher amount of wind generation relative to the transmission capability in each area. For the Leland Olds area, there is a more robust transmission system in the area, including 230kV lines interconnecting the Bison generation to the 345kV system. The Minot area has a lower voltage transmission system, but does not have as much wind generation as the area surrounding Leland Olds. This pricing analysis would indicate that for a similar congestion and losses profile, Minot and Leland Olds experience comparable loading.

For the MISO nodes, the level of MLC/MCC are very comparable for Bison and Langdon, but lower for Ashtabula. This could be an indication that there is more available transmission capacity in the east central area of North Dakota. The lower values for Hoot Lake provide an additional indication of an area that has less wind generation than other MISO nodes that were being evaluated.

Average MLC/MCC analysis doesn't provide insights into the combined impact of positive and negative values across a period, but a monthly duration curve does indicate the range of values across each month. The 2016 - 2019 monthly duration curves for Leland Olds are shown in Figure 3-9. Average MLC/MCC analysis doesn't provide insights into the combined impact of positive and negative values across a period for the month, but a monthly duration curve does indicate from a high level the range of values across each month. The 2016-2019 monthly duration curves for Leland Olds is shown in Figure 3-9, and it is clear that the range of values is very consistent for 2016 - 2018, while 2019 has a much more pronounced level of extremes, both positive and negative. These extremes were not enough to impact the averages but are an indication of short-term extreme conditions on the system. The correlation of these periods to binding constraint data can provide more insights into what is driving these excursions. Suffice it to say that the 2019 pricing was more unpredictable than 2016-2018.

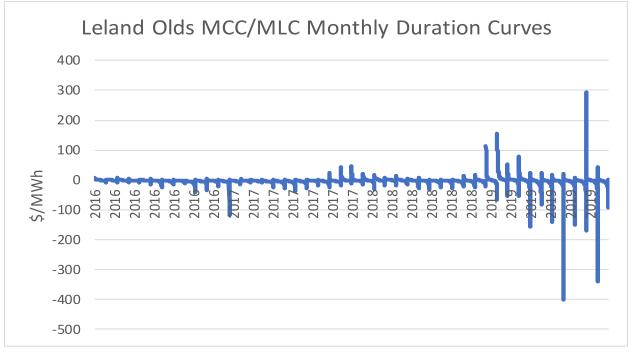


Figure 3-9: Leland Olds MCC/MLC Monthly Duration Curve

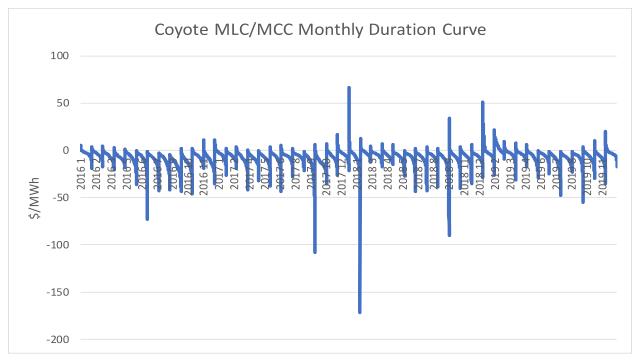


Figure 3-10: Coyote MLC/MCC Monthly Duration Curve

The monthly duration curve for the Coyote pricing node show a number of observations including a much more regular occurrence of negative values for all months from 2016 - 2019. There is a positive value for a number of months, but clearly for fewer hours than the hours with negative values. Another observation is that the more extreme range of values is not limited to 2019 but has a number of occurrences in 2017 and 2018, with less extreme variations in 2019.

3.3.2 Basis results

Basis is defined as the pricing difference between two points on the system. Basis analysis shows the value of power at different locations on the system. There are also trading hubs on the system where power is purchased and sold, allowing pricing at the trading hubs to be compared to pricing with other transactions from the same location. The basis from SPP Leland Olds to Big Bend and to Groton demonstrates the pricing basis over two major 345kV transmission lines from North Dakota. The MISO basis from Coyote to Hoot Lake provided a means of showing pricing differences on major North Dakota Export facilities.

Monthly basis results for the SPP and MISO paths are similar in that the highest levels of basis occur in the June – August timeframe, with lower values in other months. The SPP Leland Olds to Big Bend basis is slightly negative for all months except June and July, and more strongly positive in the off-peak months as seen in Figure 3-11. In the on-peak graph of Figure 3-12, the other months are more negative than June and July.

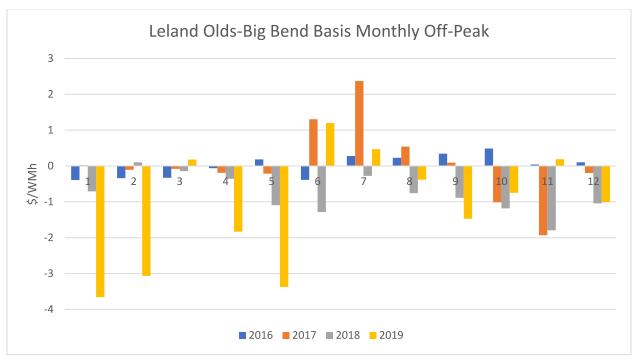
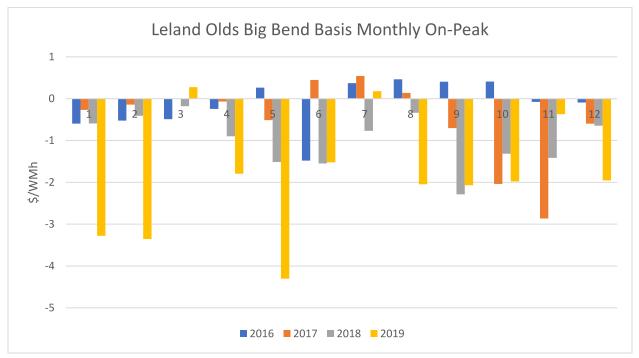



Figure 3-11: Leland Olds-Big Bend Basis Monthly Off-Peak

Figure 3-12: Leland Olds-Big Bend Basis Monthly On-Peak

The Leland Olds Groton basis results are positive June – August for both off-peak as shown in Figure 3-13 and on-peak periods as shown in Figure 3-14.

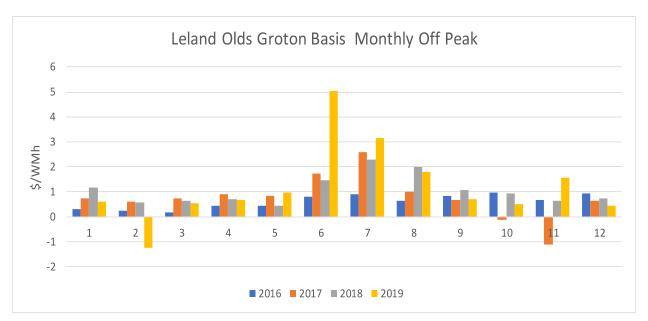
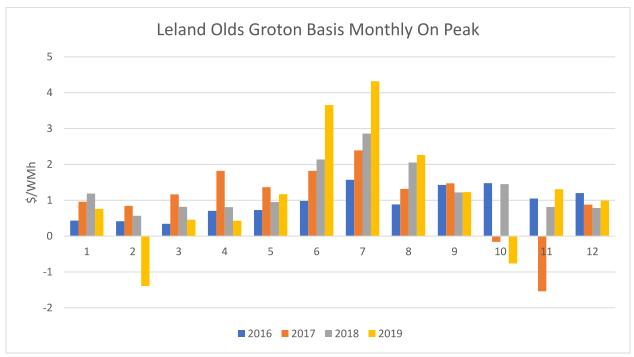



Figure 3-13: Leland Olds Groton SPP Basis Monthly Off-Peak

Figure 3-14: Leland Olds Groton SPP Basis Monthly On-Peak

MISO basis results for Coyote to Hoot Lake are also positive months in June – August for both on-peak and off-peak periods, with on-peak averages being much higher than the SPP basis results. Averages in July approach \$14/MWh on-peak, and other months are in the range of \$8/MWh as seen in Figure 3-15 and Figure 3-16.

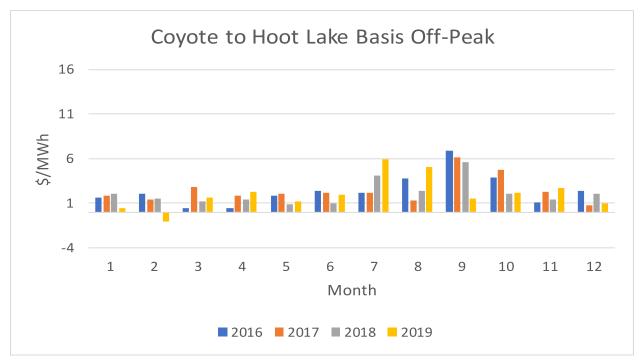
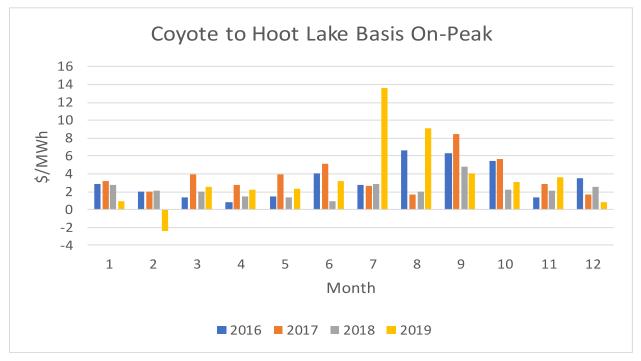



Figure 3-15: Coyote to Hoot Lake MISO Basis Off-Peak

Figure 3-16: Coyote to Hoot Lake MISO Basis On-Peak

Monthly duration curves for the SPP and MISO basis also show a fairly unpredictable hourly distribution of the basis values, which provides a more complete picture of the range of positive and negative values by month. An example of this is shown for Coyote – Hoot Lake basis in Figure 3-17.

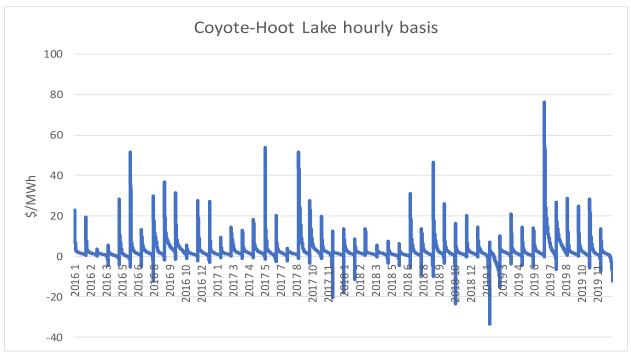
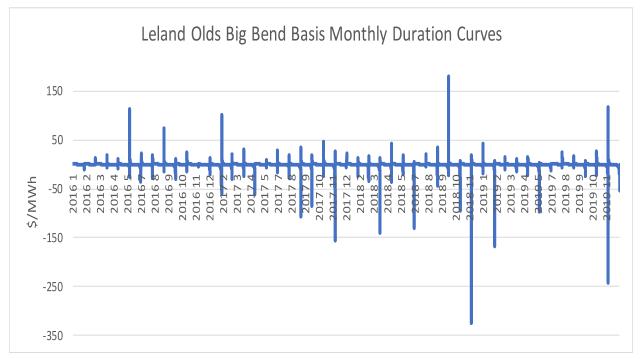



Figure 3-17: Coyote to Hoot Lake Hourly MISO Basis

Figure 3-18: Leland Olds to Big Bend Hourly SPP Basis

Higher monthly results in June – August show greater levels of congestion in moving power out of North Dakota. The transmission results showing the need for additional transmission facilities for specific seasons can be compared to the basis pricing results to demonstrate that the greatest need is for the summer peak periods.

3.3.3 Electric Storage Considerations

Electric storage installations are likely to be an integral component of a higher renewable generation portfolio in the future. The implementation of electric storage in lieu of making traditional "poles and wires" transmission investments is being discussed in many arenas. Implementing storage in lieu of traditional transmission investments is still a relatively new concept, but there is value of including some preliminary analysis investigating the amount of electric storage required to accommodate the historic pattern of high renewable energy penetration. The analysis is supported by the premise that the current transmission system was adequate for the historic hourly pattern of electric generation and load. If a higher amount of renewable generation replaced a share of the conventional generation portfolio, electric storage could be the mechanism to store excess generation from renewables or provide energy back to the system when the renewable generation is not providing energy to match the historic energy production pattern from conventional resources.

This analysis looked at the number of hours of storage required to integrate higher levels of renewable resources and assumed that the historical dispatch and import/export levels and patterns did not change. This stringent condition was assumed in order to not impact other generation resources. This analysis also assumed that the energy storage added would be capable of charging and discharging over a much longer timeframe than typically required for energy storage in order to accommodate the higher levels of energy needed to serve summer load.

The available data for this analysis is not specific to North Dakota but is based on the MISO North region, and then scaled to the amount of annual North Dakota coal generation output. MISO has provided historic generation output data in MW by fuel type and region. The analysis provides insights into the amount of storage required at a system level without getting into the specific location of the interconnection.

Wind and energy storage were assumed to replace 30% of the existing coal generation based on the annual scaling of 2018 hourly production data for MISO North to the North Dakota totals. This results in a targeted annual amount of wind and energy storage of 5,600,000 MWh for the share of the MISO North hourly generation pattern that is assumed to be North Dakota coal generation. The energy storage system was assumed to be ideal, with no losses, in order to simplify the energy storage calculations. The model can be run in two modes: one was an annual energy storage optimization mode with the objective of matching the energy profile without regard to costs, and the other was a least cost approach where the assumed amount of wind was overbuilt. This approach would reduce the amount of energy storage systems required due to the higher costs of energy storage compared to wind generation investments.

Results of the first case demonstrate that 1,727 MW of wind additions would be required in order to provide the annual energy production of 5,600,000 MWh that would replace the theorical retirement of 900 MW of coal generation.

The hourly shape of the surplus and deficits with the additional 1,727 MW of wind is shown in Figure 3-19.

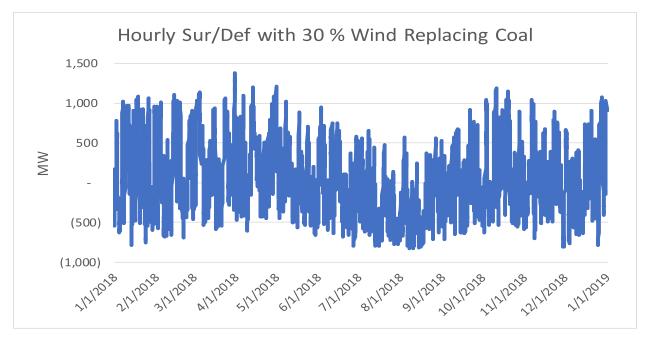


Figure 3-19: Hourly Surplus and Deficits: 30% Wind Replacement

In the hours above the zero line, the wind generation is higher than the coal generation that was replaced, and in the hours below the line, there isn't enough generation output from wind generation. This surplus and deficit can be accommodated by either changing the dispatch of other resources on the system after making the required transmission improvements, or by adding energy storage systems near the wind generation.

Another snapshot of the surplus and deficit results from the wind addition that shows the amount of electric storage is shown in Figure 3-20.

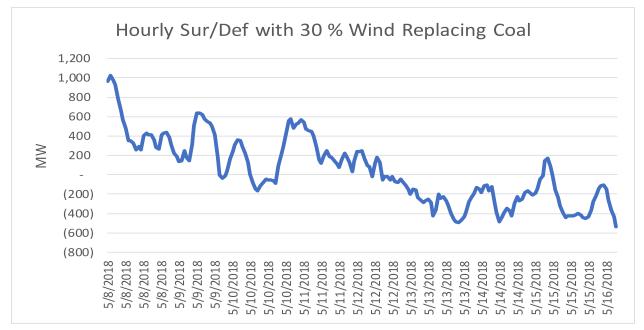


Figure 3-20: Hourly Surplus and Deficits: 30% Wind Replacement + Storage

This analysis shows the cumulative impact of the hourly surplus and deficit values. During the hours when the wind generation is above the zero line, the energy storage system is assumed to be charging. Hours below the zero line are when the energy storage system would be discharging onto the system.

Figure 3-21: Hourly Cumulative Energy Storage Total

The energy storage required to make this amount of energy fit into the system dispatch would have a maximum charging capacity of over 831 MW, and a maximum discharge output of over 1,831 MW. Figure 3-21 shows the hourly cumulative energy storage required. The total amount of energy storage required on the system for the 2018 analysis was over 560,000 MWh. The amount of storage required could be much lower in a scenario of optimizing for lowest cost and overbuilding the wind generation. The minimum cost optimization was beyond the scope of this analysis but would be expected to significantly reduce the amount of energy storage required.

This analysis could be considered "locked down" in that it doesn't assume any additional import or export of power from outside the area of wind development that would require additional transmission facilities or changes in dispatch of other generation.

4 Conclusion

This study included a review of the applicable Generation Interconnection (GI) Queues and GI study reports and a review of the current Transmission Expansion Plans (TEPs) covering North Dakota. The research concluded that there is a significant amount of generation in the Midwest Independent System Operator (MISO) and Southwest Power Pool (SPP) GI Queues seeking interconnection in North Dakota during the study timeframe, and the amount of generation currently in these queues exceeds the projected load growth in North Dakota. With very few transmission expansion projects identified during the study timeframe that would add significantly to the transmission capacity for internal transfers and interstate exports, the existing North Dakota transmission system is becoming highly utilized with little excess capacity to accommodate any new generation being built in the state.

The study focused on three key analyses of North Dakota transmission capacity; steady-state thermal, steady-state voltage stability, and market signals. With the support of NDTA and several North Dakota Transmission Owners (TOs), PSE developed near-term, mid-term, and long-term transmission models to perform the steady-state assessments of the North Dakota transmission system capacity. In addition, PSE analyzed historical market data and trends to provide insight into how they may impact future pricing signals. The results of these analyses further confirmed the initial research; the North Dakota Transmission system is running out of available transmission capacity.

Recent GI requests in MISO and SPP have been generally unsuccessful, with about 80 percent of queue positions withdrawing during the GI study process. Most of these withdrawals are due to the multi-million-dollar network upgrades assigned to the generator projects during the MISO or SPP GI studies. These results are indicative of the need for additional transmission capacity in order to accommodate additional generation within the state of North Dakota.

Based on the assumptions included in our analyses, PSE believes that the excessive steady-state system intact flow observed on the NDEX facilities, the number of potential system intact thermal and voltage violations identified, and the indicated available injection capacity prior to contingencies indicate that system instability would likely be observed as North Dakota generation increases in the future. Mitigation would likely be required to accommodate the addition of new generation in North Dakota.

The Basis/LMP Pricing Analysis demonstrated that 2016-2019 MISO and SPP (MLC/MCC) values are negative in most locations of North Dakota. Monthly duration curves show increasing peaks and valleys in the \$/MWHr pricing. The on-peak and off-peak basis comparisons of North Dakota generation nodes also show both positive and negative historical trends, although the magnitudes in either direction in \$/MWHr is fairly minimal suggesting that there are no prime locations for generator additions based on Basis/LMP pricing signals alone.

The 30% wind replacement analysis demonstrates that approximately 1,727 MW of additional wind generation would be required in order to provide the annual energy production of 5,600,000 MWh needed to replace the theoretical retirement of 900 MW of coal generation. The energy storage required to make this amount of wind energy fit into the system dispatch would have a maximum charging capacity of over 831 MW, and a maximum discharge output of over 1,831 MW. The total amount of energy storage required on the system for the 2018 analysis was 560,000

MWh. The amount of storage required could be much lower in a scenario that optimized for lowest cost and overbuilding the wind generation; such an analysis was beyond the scope of this study.

The State of North Dakota's transmission system is nearing full utilization of its existing capacity. Without the addition of significant new extra-high voltage (EHV: 345kV - 765kV) and high voltage (HV: 100kV - 345kV) AC and/or HVDC transmission capacity in the next 10-20 years, we expect fewer and fewer new generation interconnection projects to be built, the risk of voltage instability within the region to increase, and LMP pricing for existing generation to continue to decrease as transmission congestion continues to increase for generation exports out of the state into the regional MISO and SPP markets.

Although this study was only designed to look at the existing and planned North Dakota transmission system, there are other study efforts underway looking at possible futures of significant renewable energy penetrations and robust transmission overlays, including North Dakota. One of these ongoing studies is the CapX2050 Transmission Vision Study⁴.

⁴ <u>http://www.capx2020.com/</u>

Appendix A. Generator Interconnection Queue Projects

Service
Type
ERIS
NRIS
ERIS
ERIS
ERIS
ERIS
NRIS Milton S Young Station #2 Switchyard Center Bus Substation
NRIS
ERIS
NRIS
NRIS MDU 41.6kV transmission line at Glen Ullin between switches 6315 and 6071
NRIS
NRIS Only
NRIS
NRIS 230kV Heskett-Wishek, 20 miles NW of Wishek
ERIS

Table A-1: MISO Generator Interconnection Projects

North Dakota Transmission Authority Power System Engineering, Inc.

North Dakota Transmission Capacity Study Report

Proj. ID	TO	County	State	Service Type	POI Name	Summer MW	Winter MW	Fuel	Post GIA Status
J628	GRE	Grand Forks, Nelson	ND	NRIS	Ramsey - Prairie 230kV Line Tap	400	400	Wind	Active
J705	MP (Allete)	Morton	ND	NRIS	Tri-county 230kV substation	100	100	Wind	Active
J706	MP (Allete)	Morton	ND	NRIS	Tri-county 230kV sub	100	100	Wind	Active
J713	MP (Allete)	Oliver	ΠN	NRIS	Square Butte East 230kV Substation	300	300	Wind	Active
J741	NDM	Emmons, Logan	ΠN	NRIS	Wishek - Linton 115kV	51	51	Wind	Active
J743	NSP (Xcel)	Cass	ND	NRIS	Bison 345kV Substation	200	200	Wind	Active
J746	GRE	McHenry, McLean, Ward	ΠN	NRIS	Stanton-McHenry 230kV	200	200	Wind	Active
1779	NDN	Emmons, Logan	ΟN	NRIS	Bismarck-Linton 115kV	51	51	Wind	Active
J816	OTP	Cass	ND	NRIS	Buffalo 115kV Substation	60	60	Solar	Active
J880	NSP (Xcel)	Ward	ND	NRIS	Magic City 230kV sub	150	150	Wind	Active
J889	GRE	Nelson	ND	NRIS	Ramsey - Prairie 230KV Line Tap	150	150	Wind	Active
J897	GRE	Grand Forks	ND	NRIS	Prairie - Ramsey 230kV line	190	190	Wind	Active
J929	MDU	McIntosh	ND	NRIS	Wishek 41.6kV Substation	25	25	Solar	Active
J946	NSP (Xcel)	Cass	ND	NRIS	Bison 345kV Substation	200	200	Solar	Active
J975	OTP	Cass	ND	NRIS	Buffalo 115kV Substation	150	150	Wind	Active
7997	MDU	LaMoure	ND	NRIS	Ellendale 230kV Substation	200	200	Solar	Active
J1040	MDU	McIntosh	ND	NRIS	Wishek Junction 230kV Substation	250	250	Wind	Active
J1109	Xcel	Cass	ND	NRIS	Bison 345kV Substation	207	207	Wind	Active
J1170	Xcel	Cass	ND	NRIS	Bison 345kV Substation	200	200	Solar	Active
J1187	GRE	Mercer	ND	NRIS	Stanton 230kV Substation	151.8	151.8	Wind	Active
J1193	MDU	Morton	ND	NRIS	Heskitt 115kV Switchyard	103.1	103.1	Gas	Active
J1428	OTP	Cass	ND	NRIS	Buffalo 345kV Substation	200	200	Solar	Active
J1456	OTP	Sheridan	ND	NRIS	Harvey - Underwood 230kV Line Tap	300	300	Wind	Active

North Dakota Transmission Authority Power System Engineering, Inc.

28

North Dakota Transmission Capacity Study Report

		Nearest Town			Summer	Winter	Service	Generation		
williamsNDWAPA300300ERWindTande 345KVHettingerNDBEPC150150ERWindBrady 230kV substationDiverNDBEPC202ER/NRWindLeland Olds 230kVBarleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA202202ERWindHilken 230kVBurleighNDWAPA202202ERWindHilken 230kVBurleighNDWAPA202202ERWindHilken 230kVBurleighNDWAPA202202ERWindTande 345kVBurleighNDWAPA1.31.3ERWindLeland Olds 345kVBurleighNDWAPA202200.1200.1ERWindTande 345kVBurleighNDWAPA202202ERWindTande 345kVERBurleighNDNDBEPC300ERWindLogan 230kV stationWardNDNDER/NRWindLogan 230kV stationER/NRWardNDND50ER/NRWindLogan 230kV stationWardNDND5050ER/NRWindTande 345kVWardNDND74.174.1ER/NRWindTande 345kV <th>GI Number</th> <th>or County</th> <th>State</th> <th>\mathbf{CA}</th> <th>MW</th> <th>MW</th> <th>Type</th> <th>Type</th> <th>Substation or Line</th> <th>Status</th>	GI Number	or County	State	\mathbf{CA}	MW	MW	Type	Type	Substation or Line	Status
HettingerNDBEPC150150ERWindBrady 230kV substationOliverNDBEPC202202ER/NRWindLeland Olds 330kVBarnesNDWAPA3.33.3ERWindValley City 115kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA2.22202ERWindHilken 230kVBurleighNDWAPA202202ERWindTande 345kVMercerNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDBEPC200.1200.1ERWindTande 345kVBurleighNDBEPC300BERWindLando Olds 345kVBurleighNDBEPC300BERWindTande 345kVBurleighNDBEPC200.1200.1ER/NRWindDogan 230kV stationWardNDNDFRWindLogan 230kV stationMoreWardNDND50ER/NRWindLogan 230kV stationWardNDND50ER/NRWindLogan 230kV stationWardNDND5050ER/NRWindLogan 230kV stationWardND <td>GEN-2015-046</td> <td>Williams</td> <td>ND</td> <td>WAPA</td> <td>300</td> <td>300</td> <td>ER</td> <td>Wind</td> <td>Tande 345kV</td> <td>Executed GIA</td>	GEN-2015-046	Williams	ND	WAPA	300	300	ER	Wind	Tande 345kV	Executed GIA
OliverNDBEPC202202ER/NRWindLeland Olds 230kVBarnesNDWAPA100100ERWindValley City 115kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA202202ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDBEPC300ERWindTande 345kVBurleighNDBEPC300ERNindTande 345kVWardNDBEPC300ERWindTogan 230kV sationWardNDPO100ER/NRWindLogan 230kV sationWardNDMontailND5050ER/NRWindWardNDMontailND701100ER/NRWindWardNDMontailND74.174.1ER/NRWindWardNDMontailND72.2252ER/NRWindWardNDMontailND74.174.1E	GEN-2015-096	Hettinger	ND	BEPC	150	150	ER	Wind	Brady 230kV substation	In-Service
BarnesNDWAPA100100ERWindValley City 115kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA3.33.3ERWindHilken 230kVBurleighNDWAPA202202ERWindLeland Olds 345kVBurleighNDWAPA202202ERWindTande 345kVBurleighNDBEPC200.1200.1ERWindHilken 230kVBurleighNDBEPC200.1200.1ERWindRhame 230kV subBowmanNDBEPC300300ERWindLeland Olds 345kVWardNDBEPC300300ERWindRhame 230kV subinWardNDPEPC300500ER/NRWindLogan 230kV stationWardNDMod100100ER/NRWindLogan 230kV stationWardNDMod74.1ER/NRWindLogan 230kV stationWardNDMO74.1ER/NRWindLogan 230kV stationWardNDMO74.1ER/NRWindLogan 230kV stationWardNDMO74.1ER/NRWindLogan 230kV stationWardNDMO74.1ER/NRWindLogan 230kV stationWard <td>GEN-2016-004</td> <td>Oliver</td> <td>ND</td> <td>BEPC</td> <td>202</td> <td>202</td> <td>ER/NR</td> <td>Wind</td> <td>Leland Olds 230kV</td> <td>Active</td>	GEN-2016-004	Oliver	ND	BEPC	202	202	ER/NR	Wind	Leland Olds 230kV	Active
BurleighNDWAPA 3.3 3.3 ER WindHilken 230kVBurleighNDWAPA 3.3 3.3 ER WindHilken 230kVBurleighNDWAPA 3.3 3.3 ER WindHilken 230kVMercerNDWAPA 202 202 ER WindHilken 230kVBurleighNDWAPA 1.3 1.3 1.3 ER WindTande $345kV$ BurleighNDWAPA 1.3 1.3 ER WindHilken $230kV$ BurleighNDBEPC 200.1 200.1 ER Wind $Tande 345kVBurleighNDBEPC300ERWindTande 345kVBurleighNDBEPC300.1ER/RWindTande 345kVWilliamsNDBEPC300.1ER/RWindLogan 230kV stationWardNDPEPC300ER/RWindLogan 230kV stationWardNDPEPC300ER/RWindLogan 230kV stationWardNDPO500ER/RWindLogan 230kV stationWardNDPO500ER/RWindLogan 230kV stationWardNDPO500ER/RWindLogan 230kV stationWardNDPO500ER/RWindLogan 230kV stationWardNDPO500ER/RWindLog$	GEN-2016-007	Barnes	QN	WAPA	100	100	ER	Wind	Valley City 115kV	Active
BurleighNDWAPA 3.3 3.3 ER WindHilken 230kVMercerNDWAPA 202 202 ER Wind $Leland Olds 345kV$ BurkeNDWAPA 202 202 ER Wind $Tande 345kV$ BurkeNDWAPA 1.3 1.3 ER Wind $Tande 345kV$ BurkeNDWAPA 1.3 1.3 1.3 ER Wind $Tande 345kV$ BurleighNDWAPA 1.3 1.3 ER Wind $Tande 345kV$ BurleighNDBEPC 200.1 200.1 ER Wind $Tande 345kV$ WardNDBEPC 300 300 ER Wind $Leland Olds 345kV$ WardNDND 100 100 ER/NR Wind $Logan 230kV stationWardNDND100100ER/NRWindLogan 230kV stationWardNDND5050ER/NRWindLogan 230kV stationWardNDND74.174.174.1ER/NRWindTande 345kVMontrailNDND72252ER/NRWindDegen 115kV substationMontrailND72255ER/NRWindPoleer 115kV substationMontrailND72255ER/NRNindNothold 115kV substationMontrailND72255255ER/NRNin$	GEN-2016-052	Burleigh	ND	WAPA	3.3	3.3	ER	Wind	Hilken 230kV	Active
MercerNDWAPA202202ERWindLeland Olds 345kVBurkeeNDWAPA202202ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDWAPA1.31.3ERWindTande 345kVBurleighNDBEPC200.1ERWindRhame 230kV SubWardNDBEPC300ER/RWindToga - Williston 230kVWardNDND100100ER/RWindLogan 230kV stationWardNDND100100ER/RWindLogan 230kV stationWardNDND50ER/RWindBerthold 115kV stationWardNDND5050ER/RWindBerthold 115kV stationWardNDND74.174.1ER/RWindBerthold 115kV stationWardNDND5050ER/RWindBerthold 115kV stationWardNDND74.174.1ER/RWindBerthold 115kV stationWardNDND72252ER/RWindMont-Land 016s 345kVWardNDND74.174.1ER/RWindMont-Land 016s 345kVMontrailNDND72252ER/RWindNo <td< td=""><td>GEN-2016-053</td><td>Burleigh</td><td>ND</td><td>WAPA</td><td>3.3</td><td>3.3</td><td>ER</td><td>Wind</td><td>Hilken 230kV</td><td>Active</td></td<>	GEN-2016-053	Burleigh	ND	WAPA	3.3	3.3	ER	Wind	Hilken 230kV	Active
BurkeNDWAPA202202ERWindTande 345KVBurleighNDWAPA1.31.3ERWindHilken 230kV SubBowmanNDBEPC200.1200.1ERWindRhame 230kV SubBowmanNDBEPC300300ERWindRhame 230kV SubWardNDBEPC300300ER/NRWindLogan 230kV SubWardNDP100100ER/NRWindLogan 230kV StationWardNDP100100ER/NRWindLogan 230kV stationWardNDP100100ER/NRWindLogan 230kV stationWardNDP20505050ER/NRWindWardNDP2050S0S0S0S0WardNDP2050ER/NRWindBerthold 115kV stationWardNDP252252ER/NRWindBerthold 115kV stationMontrailNDP74.174.1ER/NRWindBerthold 115kV stationMontrailNDP255255ER/NRWindBerthold 115kV stationMontrailNDP74.174.1ER/NRWindBerthold 115kV stationMontrailNDP7272255ER/NRWindBerthold 115kV stationMontrailNDP74.174.1 <td>GEN-2016-130</td> <td>Mercer</td> <td>ΩN</td> <td>WAPA</td> <td>202</td> <td>202</td> <td>ER</td> <td>Wind</td> <td>Leland Olds 345kV</td> <td>Active</td>	GEN-2016-130	Mercer	ΩN	WAPA	202	202	ER	Wind	Leland Olds 345kV	Active
BurleighNDWAPA1.31.3ERWindHilken 230kV subBowmanNDBEPC200.1ERWindRhame 230kV sub1WilliamsNDBEPC300300ERWindRioga - Williston 230kV sub1WardNDBEPC300300ER/NRWindLogan 230kV station1WardNDP100100ER/NRWindLogan 230kV station1WardNDP100100ER/NRWindLogan 230kV station1WardNDP5050ER/NRWindBerthold 115kV station1WardNDP5050ER/NRWindBerthold 115kV station1WardNDNDP252252ER/NRWindBerthold 115kV stationMontrailNDNDP74.1ER/NRWindGroon-Leland Olds 345kVMontrailNDNDT74.1ER/NRSolarEdgely 115kV substationMontrailNDNDT72255ER/NRSolarEdgely 115kV substationWilliamsNDNDT73.1ER/NRSolarEdgely 115kV substationWorkMontrailNDT73.2ER/NRSolarEdgely 115kV substationWilliamsNDT255255ERWindNoTWilliamsNDT35Solar	GEN-2016-151	Burke	ND	WAPA	202	202	ER	Wind	Tande 345kV	Active
BowmanNDBEPC 200.1 200.1 ERWindRhame $230kV$ SubHame $230kV$ SubWilliamsNDBEPC 300 ERWindTioga - Williston $230kV$ stationWardNDNDEPC 300 ER/NRWindLogan $230kV$ stationWardNDNDP100100ER/NRWindLogan $230kV$ stationWardNDNDP100100ER/NRWindLogan $230kV$ stationWardNDNDFS05050ER/NRWindBerthold 115kV stationWardNDND505050ER/NRWindBerthold 115kV stationMoltoshNDND72252ER/NRWindBerthold 115kV stationMoltrailNDND7272ER/NRWindRoton-Leland Olds $345kV$ MontrailNDND7272ER/NRSolarEdgely 115kV substationWilliamsND255255ER/NRSolarNew switching station onWilliamsND7272ER/NRSolarNew switching station onWilliamsND3535ER/NRSolarNew switching station onWilliamsND7335ER/NRSolarNew switching station onWilliamsND7335ER/NRSolarNew switching station onWilliamsND7335ER/NRSolar <t< td=""><td>GEN-2016-155</td><td>Burleigh</td><td>ND</td><td>WAPA</td><td>1.3</td><td>1.3</td><td>ER</td><td>Wind</td><td>Hilken 230kV</td><td>Active</td></t<>	GEN-2016-155	Burleigh	ND	WAPA	1.3	1.3	ER	Wind	Hilken 230kV	Active
WilliamsNDBEPC300ERWindTioga - Williston 230kVWardNDND100100ER/NRWindLogan 230kV stationWardNDND100100ER/NRWindLogan 230kV stationWardNDND100100ER/NRWindLogan 230kV stationWardNDND5050ER/NRWindBerthold 115kV stationWardNDND5050ER/NRWindBerthold 115kV stationWardNDND74.1FR/NRWindBerthold 115kV stationMoltrailND74.1FR/NRWindBerthold 115kV stationMontrailND74.1ER/NRWindBerthold 115kV stationMontrailND74.1FR/NRWindBerthold 115kV stationMontrailND74.1ER/NRWindGroton-Leland Olds 345kVMontrailND72252ER/NRSolarEdgely 115kV substationWilliamsND255255ER/NRSolarNew witching station onWilliamsND355ER/NRSolarNoerer 115KV substationWilliamsND150150ER/NRSolarWilliamsND35ER/NRSolarWilliamsND35ER/NRSolarWilliamsND150150ER/NRWilliamsND150150150/NRWil	GEN-2017-010	Bowman	QN	BEPC	200.1	200.1	ER	Wind	Rhame 230kV Sub	Active
wardND100100ER/NRwindLogan 230kV stationWardNDND100ER/NRWindLogan 230kV stationWardNDND100100ER/NRWindLogan 230kV stationWardNDND5050ER/NRWindBerthold 115kV stationWardNDND5050ER/NRWindBerthold 115kV stationWardNDND252252ER/NRWindBerthold 115kV stationMoltrailND7274.174.1ER/NRWindBerthold 115kV stationMontrailND72252ER/NRWindBerthold 115kV stationLaMoureND72252ER/NRWindBerthold 115kV stationWilliamsND727272BR/NRNindWilliamsND7272FR/NRNindMercer 115kV substationWilliamsND355255ER/NRSolarBEPC 230kV substationMercerND150150ER/NRSolarPioneer 115kV substation	GEN-2017-048	Williams	ND	BEPC	300	300	ER	Wind	Tioga - Williston 230kV	Active
WardND100100ER/NRWindLogan 230kV stationWardNDND100ER/NRWindLogan 230kV stationWardNDS050ER/NRWindBerthold 115kV stationWardNDS050ER/NRWindBerthold 115kV stationWardNDS050ER/NRWindBerthold 115kV stationMoltoshND252252ER/NRWindBerthold 115kV stationMoltrailND74.174.1ER/NRWindGroton-Leland Olds 345kVMontrailND727272BatteryTande 345kVWilliamsND72255ER/NRSolarEdgely 115kV substationWilliamsND35255ERWindNew switching station onWilliamsND35255ER/NRSolarPioneer 115kV substationMercerND150150ER/NRSolarPioneer 115kV substation	GEN-2017-214	Ward	ND		100	100	ER/NR	Wind	Logan 230kV station	Active
WardND100100ER/NRWindLogan 230kV stationWardND5050ER/NRWindBerthold 115kV stationWardND5050ER/NRWindBerthold 115kV stationMcIntoshND252252ER/NRWindBerthold 115kV stationMcIntoshND74.174.1ER/NRWindGroton-Leland Olds 345kVMontrailND72252ER/NRBatteryTande 345kV stationMontrailND7272FR/NRSolarEdgeley 115kV substationWilliamsND255ER/NRSolarEdgeley 115kV substationWilliamsND35255ERNew Switching station onWilliamsND150255ERNindMonerel 115kV substationMercerND150150ER/NRSolarPioneer 115kV substation	GEN-2017-215	Ward	ND		100	100	ER/NR	Wind	Logan 230kV station	Active
WardND5050ER/NRWindBerthold 115kV stationNardND5050ER/NRWindBerthold 115kV stationMcIntoshND252252ER/NRWindBerthold 115kV stationMontrailND74.174.1ER/NRWindGroton-Leland Olds 345kVMontrailND72252ER/NRBatteryTande 345kV substationLaMoureND7272FR/NRSolarEdgeley 115kV substationWilliamsND255255ERNew switching station onWilliamsND3535ER/NRSolarIndson-Tande 345kV lineWilliamsND150150ER/NRSolarPioneer 115kV substation	GEN-2017-216	Ward	ND		100	100	ER/NR	Wind	Logan 230kV station	Active
WardND5050ER/NRWindBerthold 115kV stationMcIntoshND 252 252 ER/NR Wind $Groton-Leland Olds 345kV$ MontrailND 74.1 74.1 ER/NR $Wind$ $Groton-Leland Olds 345kV$ MontrailND 72 72 ER/NR $Battery$ $Tande 345kV$ MontrailND 72 72 72 ER/NR $Solar$ $Edgely 115kV substation$ WilliamsND 255 255 ER $Wind$ $New switching station onWilliamsND3535ER/NRSolarPioneer 115kV substationMercerND150150ER/NRSolarPioneer 115kV substation$	GEN-2017-235	Ward	ND		50	50	ER/NR	Wind	Berthold 115kV station	Active
McIntoshND252252ER/NRWindGroton-Leland Olds 345kVMontrailND74.174.1ER/NRBatteryTande 345kVLaMoureND7272ER/NRSolarEdgeley 115kV substationWilliamsND255255ERNew switching station onWilliamsND3535ER/NRSolarIdgeor-Tande 345kV lineWilliamsND150150BRWindJudson-Tande 345kV line	GEN-2017-236	Ward	ND		50	50	ER/NR	Wind	Berthold 115kV station	Active
MontrailND74.174.1ER/NRBatteryTande 345kVLaMoureND7272FR/NRSolarEdgeley 115kV substationWilliamsND255255ERWindJudson-Tande 345kV lineWilliamsND3535ER/NRSolarPioneer 115kV substationWilliamsND150150ER/NRSolarPioneer 115kV substation	GEN-2018-008	McIntosh	ND		252	252	ER/NR	Wind	Groton-Leland Olds 345kV	Active
LaMoureND7272ER/NRSolarEdgeley 115kV substationWilliamsND255255ERNew switching station on Judson-Tande 345kV lineWilliamsND3535ER/NRSolarPioneer 115kV substationMercerND150150ER/NRSolarBEPC 230kV substation	GEN-2018-010	Montrail	ND		74.1	74.1	ER/NR	Battery	Tande 345kV	Active
WilliamsND255255ERWindNew switching station on Judson-Tande 345kV lineWilliamsND3535ER/NRSolarPioneer 115kV substationMercerND150150ER/NRSolarBEPC 230kV substation	GEN-2018-039	LaMoure	ND		72	72	ER/NR	Solar	Edgeley 115kV substation	Active
Williams ND 35 37 NR Solar Pioneer 115kV substation Mercer ND 150 150 ER/NR Solar BEPC 230kV substation	GEN-2018-067	Williams	ND		255	255	ER	Wind	New switching station on Judson-Tande 345kV line	Active
Mercer ND 150 150 ER/NR Solar BEPC 230kV substation	GEN-2019-020	Williams	ND		35	35	ER/NR	Solar	Pioneer 115kV substation	Active
	GEN-2019-037	Mercer	ND		150	150	ER/NR	Solar	BEPC 230kV substation	Active

Table A-2: SPP Generator Interconnection Projects

Table A-3: MPC Generator Interconnection Projects

Project Status	In-Service	In-Service	In-Service	In-Service	In-Service	In-Service	In-Service	Active
IOd	Langdon 115kV Substation	Langdon 115kV Substation	Langdon 115kV Substation	Maple River 230kV Substation	Maple River 230kV Substation	Square Butte 230kV Substation	Center - Mandan 230kV Line	Bemidji 69kV Line (CB 550)
POI County, State	Cavalier, ND	Cavalier, ND	Cavalier, ND	Cass, ND	Cass, ND	Oliver, ND	Oliver, ND	Beltrami, MN
Service Type	ER	ER	ER	NR	ER	NR	NR	ER
Facility Type	Wind	Wind	Wind	Wind	Wind	Coal	Wind	Solar
Winter MW	0.06	60.0	40.5	378.8	49.6	455.0	100.0	12.0
Summer MW	99.0	60.0	40.5	378.8	49.6	455.0	100.0	12.0
MPC Queue Position	MPC00100	MPC00200	MPC00300	MPC00500	MPC01200	MPC01300	MPC02100	MPC03000

North Dakota Transmission Capacity Study Report

29

North Dakota Transmission Authority Power System Engineering, Inc.

0404.00	Suatus	ve	ve	ve	ve	ve	ve																													
Duciont	rroject Status	Active	Active	Active	Active	Active	Active			38SUM	0.2	0.2	30.7	0.1	11.3	5.6	2.2	2.2	4.4	4.3	11.3	11.2	20.7	6.6	13.0	4.4	4.4	55.8	8.7	55.8	17.4	6.5	6.5	13.1	16.7	26.1
		0kV Line	0kV Line	V Line	V Line	ubstation	T		W	27WIN	0.2	0.2	18.0	0.1	12.1	6.0	3.1	3.1	6.1	5.9	12.1	12.0	12.1	9.1	17.9	6.0	6.0	20.0	12.0	20.0	24.0	9.0	9.0	18.0	6.0	15.3
IOd		Frontier-Wahpeton 230kV Line	Frontier-Wahpeton 230kV Line	Center-Prairie 345kV Line	Center-Prairie 345kV Line	Square Butte 230kV Substation	Prairie 230kV		Dispatched MW	26SUM	0.1	0.1	9.4	0.0	6.3	3.1	1.6	1.6	3.2	3.1	6.3	6.2	6.3	4.7	9.3	3.1	3.1	40.0	6.2	40.0	12.5	4.7	4.7	9.4	12.0	8.0
	r F	Frontier-V	Frontier-V	Center-	Center-	Square Bu	P	ispatch	Di	22SUM	0.1	0.1	9.4	0.0	6.3	3.1	1.6	1.6	3.2	3.1	6.3	6.2	6.3	4.7	9.3	3.1	3.1	20.0	6.2	20.0	12.5	4.7	4.7	9.4	6.0	8.0
y,	(D	D	s, ND	s, ND	on, ND	ND	roject Di		21SLL	0.6	0.6	54.0	0.2	36.4	18.0	9.2	9.2	18.2	17.8	36.4	36.0	36.4	27.3	53.6	18.0	18.0	0.0	36.0	0.0	72.0	27.0	27.0	54.0	0.0	45.9
POI County, State	Diale Diale	Richland, ND	Richland, ND	Eddy, ND Wells, ND	Eddy, ND Wells, ND	Oliver, ND Morton, ND	Grand Forks, ND	Table A-4: Generator Interconnection Project Dispatch		In-Service Date	12/31/2016	12/31/2016	12/1/2017	12/31/2017	12/1/2018	12/31/2018	9/1/2019	9/1/2019	9/20/2019	9/20/2019	12/31/2019	12/31/2019	12/31/2019	5/1/2020	6/30/2020	7/1/2020	7/1/2020	7/31/2020	7/31/2020	9/1/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	10/30/2020
Service	1 ype	NR	NR	NR	NR	NR	NR	enerator In		Fuel Type	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Wind	Solar	Wind	Solar	Wind	Wind	Wind	Wind	Solar	Wind
Facility	I ype	Solar	Solar	Wind	Wind	Wind	Wind	Table A-4: G		Requested MW	3.3	3.3	300	1.3	202	100	51	51	101.2	98.8	202	200.1	202	151.8	298	100	100	200	200	200	400	150	150	300	60	255
Winter	M M	200.0	150.0	250.0	151.2	300.0	300.0			ISO/RTO H	SPP	SPP	SPP	SPP	SPP	SPP	MISO	MISO	MISO	MISO	SPP	SPP	SPP	MISO	OSIM	OSIM	OSIM	OSIM	OSIM	OSIM	OSIM	MISO	MISO	MISO	MISO	SPP
Summer	MM	200.0	150.0	250.0	151.2	300.0	300.0										V	V	V	N			1	N	V	N	N	N	N	N	N	V	V	Z		
MPC Queue	rosmon	MPC03600	MPC03700	MPC03800	MPC03900	MPC04000	MPC04100			GI Queue #	GEN-2016-052	GEN-2016-053	GEN-2015-046	GEN-2016-155	GEN-2016-004	GEN-2016-007	J741	J779	J302	J503	GEN-2016-130	GEN-2017-010	GEN-2016-15	J1187	J580	J705	J706	J946	J743	1997	J628	J889	J880	J713	J816	GEN-2018-067

Forward-Thinking Professionals Helping Clients and Colleagues ACHIEVE Their Goals.

North Dakota Transmission Authority Power System Engineering, Inc.

30

North Dakota Transmission Capacity Study Report

d-Thinking Professionals	Clients and Colleagues ACHIEVE Their Goals.
Forward-Thin	÷

12/1/20209.01.61.63.0 $12/1/2020$ 9.01.61.63.0 $12/1/2020$ 18.03.13.16.0 $12/1/2020$ 18.03.13.16.0 $12/1/2020$ 18.03.13.15.0 $12/1/2020$ 18.03.13.16.0 $12/1/2020$ 54.09.49.418.0 $12/1/2020$ 54.09.49.418.0 $12/1/2020$ 54.09.49.418.0 $12/1/2020$ 0.07.214.47.2 $8/1/2021$ 0.02.55.02.5 $8/1/2021$ 0.07.97.915.1 $9/30/2021$ 0.07.97.915.1 $10/1/2021$ 0.07.97.915.1 $10/1/2021$ 0.04.74.79.0 $11/30/2022$ 0.00.07.915.0 $11/30/2022$ 0.00.04.74.7 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/30/2023$ 0.00.09.418.0 $11/1/2023$ 0.00.09.418.0 <tr< th=""><th>ISO/RTO Requested MW Fuel Type</th><th>mested MW</th><th>Fuel T</th><th>vne</th><th>In-Service Date</th><th>21SLL</th><th>Di 22SUM</th><th>Dispatched MW</th><th>IW 27WIN</th><th>38SUM</th></tr<>	ISO/RTO Requested MW Fuel Type	mested MW	Fuel T	vne	In-Service Date	21SLL	Di 22SUM	Dispatched MW	IW 27WIN	38SUM
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	50	M	Wind	12/1/2020	9.0	1.6	1.6	3.0	5.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPP 50 W		W	ind	12/1/2020	9.0	1.6	1.6	3.0	5.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPP 100 W		W	'ind	12/1/2020	18.0	3.1	3.1	6.0	5.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPP 100 W		Ν	/ind	12/1/2020	18.0	3.1	3.1	6.0	5.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	Wind	12/1/2020	18.0	3.1	3.1	6.0	5.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPP 300	300		Wind	12/1/2020	54.0	9.4	9.4	18.0	30.7
	SPP 72	72		Solar	12/31/2020	0.0	7.2	14.4	7.2	2.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MISO 25	25		Solar	6/30/2021	0.0	2.5	5.0	2.5	7.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MISO 200	200		Solar	8/1/2021	0.0	20.0	40.0	20.0	55.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MISO 207	207		Wind	8/1/2021	0.0	6.5	6.5	12.4	9.0
	MISO 250	250		Wind	9/1/2021	0.0	7.8	7.8	15.0	10.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPP 252	252		Wind	9/30/2021	0.0	7.9	7.9	15.1	14.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MISO 190	190		Wind	10/1/2021	0.0	5.9	5.9	11.4	8.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MISO 150	150		Wind	10/31/2021	0.0	4.7	4.7	9.0	6.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Щ	Battery	12/1/2021	0.0	14.8	14.8	14.8	37.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPC 200	200		Solar	12/31/2021	0.0	20.0	40.0	20.0	55.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPC 150	150		Solar	12/31/2021	0.0	15.0	30.0	15.0	41.9
11/30/2022 0.0 0.0 7.8 15.0 $11/30/2022$ 0.0 0.0 4.7 9.1 $11/30/2022$ 0.0 0.0 4.7 9.1 $1/12/2023$ 0.0 0.0 9.4 18.0 $1/12/2023$ 0.0 0.0 9.4 18.0 $9/1/2023$ 0.0 0.0 9.4 18.0 $10/1/2023$ 0.0 0.0 9.4 18.0 $11/1/2023$ 0.0 0.0 $3.1.6$ 103.1 $12/1/2023$ 0.0 0.0 3.0 15.0	MISO 200	200		Solar	8/1/2022	0.0	0.0	40.0	20.0	55.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPC 250	250		Wind	11/30/2022	0.0	0.0	7.8	15.0	10.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPC 151.2	151.2		Wind	11/30/2022	0.0	0.0	4.7	9.1	6.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		300		Wind	1/12/2023	0.0	0.0	9.4	18.0	13.1
9/1/2023 0.0 0.0 9.4 18.0 10/1/2023 0.0 0.0 51.6 103.1 12/1/2023 0.0 0.0 30.0 15.0 12/1/2023 0.0 0.0 7.0 3.5	MPC 300	300		Wind	1/12/2023	0.0	0.0	9.4	18.0	13.1
10/1/2023 0.0 0.0 51.6 103.1 12/1/2023 0.0 0.0 30.0 15.0 12/1/2023 0.0 0.0 7.0 3.5	MISO 300	300		Wind	9/1/2023	0.0	0.0	9.4	18.0	13.1
12/1/2023 0.0 0.0 30.0 15.0 12/1/2023 0.0 0.0 7.0 3.5	MISO 103.1	103.1		Gas	10/1/2023	0.0	0.0	51.6	103.1	28.8
12/1/2023 0.0 0.0 7.0 3.5	SPP 150	150		Solar	12/1/2023	0.0	0.0	30.0	15.0	4.2
	SPP 35	35		Solar	12/1/2023	0.0	0.0	7.0	3.5	1.8

Table A-5: Existing Wind Dispatch

					Dispatched MW	d MW			
	21:	21SLL	22S	22SUM	26S	26SUM	274	27WIN	38SUM
Generator Name	Bench	Study	Bench	Study	Bench		Bench		Study
Velva Wind	10.69	10.54	1.85		1.85		3.56		9.54
Courtenay Wind I	0.00	0.00	15.60	15.60	15.60	15.56	60.00	59.68	80.28
Courtenay Wind II	0.00	0.00	15.60	15.60	15.60	15.56	60.00	59.68	80.28
Lake Agassiz Wind	1.80	1.80	0.31	0.31	0.31	0.31	0.60	0.60	1.61
Oliver Wind I	45.54	44.88	7.89	7.89	7.89	7.87	15.18	15.10	40.62

North Dakota Transmission Authority Power System Engineering, Inc.

North Dakota Transmission Capacity Study Report

hinking Professionals	ents and Colleagues ACHIEVE Their Goals.
Forward-Thinking	Helping Clients and

ZISLL Cenerator Name 21SLL Generator Name Bench Study Oliver Wind II 44.55 43.91 Oliver Wind III Not Modeled 33.12 32.64 Bison Wind IB 40.59 40.00 33.13 Bison Wind IB 40.50 93.13 39.74 Bison Wind 2 94.50 93.13 39.74 Bison Wind 5A 92.16 90.83 39.74 Bison Wind 5B 51.84 51.09 38.71 Bison Wind 5B 51.84 51.09 38.71 Bison Wind 5B 51.84 51.09 56.18 Ashtabula I 57.00 56.18 42.34 Ashtabula I 26.00 25.62 32.62	225UM Bench S 7.72 0.00 0.00 5.74 7.04 1.6.38	UM Study	26SUM Bench Stu	-F WN	27 Rench	27WIN	38SUM
Bench 44.55 44.55 Not Moc 33.12 33.12 94.50 94.50 94.50 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.16 92.10 92.16 92.10 92.16	Bench 7.72 0.00 5.74 7.04 16.38	Study	Bench		Rench	Ctuda:	
44.55 Not Mod 33.12 40.59 94.50 94.50 92.16 92.16 92.16 71.84 92.16 71.84 71.84 72.00 72.00 72.00 72.00 72.00	7.72 0.00 5.74 7.04 16.38			Study		Study	Study
Not Mod 33.12 33.12 94.50 94.50 94.50 92.16 92.100 57.00 57.00	0.00 5.74 7.04 16.38	1.12	7.72	7.70	14.85	14.77	39.74
1A 33.12 1B 40.59 12 94.50 13 94.50 14 92.16 5A 40.32 5B 51.84 6 92.16 1 57.00 1 42.96 1 26.00	5.74 7.04 16.38	0.00	Not Me	Not Modeled	0.00	0.00	Not Modeled
40.59 94.50 94.50 92.16 92.16 51.84 92.16 92.16 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84 21.84	7.04	5.74	5.74	5.73	11.04	10.98	29.54
94.50 94.50 92.16 40.32 51.84 92.16 57.00 42.96 26.00	16 28	7.04	7.04	7.02	13.53	13.46	36.20
94.50 92.16 40.32 51.84 92.16 77.00 42.96 26.00	00.01	16.38	16.38	16.34	31.50	31.33	84.29
92.16 40.32 51.84 92.16 77.00 42.96 26.00	16.38	16.38	16.38	16.34	31.50	31.33	84.29
40.32 51.84 92.16 57.00 42.96 26.00	15.97	15.97	15.97	15.94	30.72	30.56	82.20
51.84 92.16 57.00 42.96 26.00	66.9	6.99	66.9	6.97	13.44	13.37	35.96
92.16 57.00 42.96 26.00	8.99	8.99	8.99	8.96	17.28	17.19	46.24
57.00 42.96 26.00	15.97	15.97	15.97	15.94	30.72	30.56	82.20
142.96 26.00	23.17	23.16	23.17	23.11	94.55	94.04	119.21
26.00	7.49	7.49	7.49	7.47	14.40	14.32	38.53
	10.76	10.76	10.76	10.74	20.70	20.59	55.39
Ashtabula II 44.30 43.66	7.72	7.72	7.72	7.70	14.85	14.77	39.74
	7.96	7.96	7.96	7.94	15.30	15.22	40.94
Ashtabula III 55.80 54.99	9.73	9.73	9.73	9.71	18.72	18.62	50.09
Edgeley Wind 18.90 18.63	3.28	3.28	3.28	3.27	6.30	6.27	16.86
Herd Lake Wind I 40.00 39.42	6.24	6.24	6.24	6.23	12.00	11.94	32.11
	1.97	1.97	1.97	1.96	3.78	3.76	10.11
	4.59	4.59	4.59	4.58	8.82	8.77	23.60
V 0.00	10.48	10.48	10.48	10.46	20.16	20.05	53.95
Langdon Wind I 5.85 5.77	3.04	3.04	3.04	3.03	5.85	5.82	15.65
	15.44	15.44	15.44	15.41	70.00	69.62	79.47
Langdon Wind II 16.00 15.77	6.32	6.32	6.32	6.30	12.15	12.08	32.51
	6.32	6.32	6.32	6.30	12.15	12.08	32.51
	0.10	0.10	0.20	0.20	0.10	0.10	1.03
	24.52	24.51	24.50	24.44	42.91	42.68	115.50
Wilton Wind I 17.30 17.05	9.90	9.90	9.90	9.88	17.32	17.23	49.50
Wilton Wind II 17.30 17.05	9.90	9.90	9.90	9.88	17.32	17.23	49.50
	20.00	20.00	20.00	19.95	35.00	34.81	100.00
	8.00	8.00	8.00	7.98	14.00	13.92	40.50
Wind 37.10	21.20	21.20	21.20	21.15	37.10	36.90	106.50
Antelope Hills Wind 60.20 59.33	Not M	Not Modeled	34.40	34.32	Not N	Not Modeled	172.50
Campbell County Wind 34.30 33.80	19.60	19.60	19.60	19.55	34.30	34.11	99.00
Brady Wind 52.50 51.74	30.00	29.99	30.00	29.93	52.50	52.22	151.50

North Dakota Transmission Authority Power System Engineering, Inc.

North Dakota Transmission Capacity Study Report

-	21S	21SLL	22SUM	UM	26SUM	UM	277	NIML2	38SUM
	sench	Study	Bench	Study	Bench	Study	Bench	Study	Study
Lindahl Wind 52	52.50	51.74	30.00	29.99	30.00	29.93	52.50	52.22	150.49
ind	9.00	8.87	7.00	7.00	4.68	4.67	9.00	8.95	24.08
	5.85	5.77	6.00	6.00	3.04	3.03	5.85	5.82	15.65
Thunder Spirit Wind I 32	2.25	31.78	24.00	24.00	16.77	16.73	55.00	54.70	86.30
1	2.75	12.57	13.00	13.00	6.63	6.61	12.75	12.68	34.12
Merricourt Wind	Not Modeled	odeled	Not Modeled	odeled	0.00	0.00	Not M	Not Modeled	0.00
Tatanka Wind 99	00.00	97.57	42.00	42.00	28.08	28.01	104.00	103.44	144.50

Appendix B. Transmission Expansion Plan Projects

Table B-6: MISO MTEP19 Active Projects

		¢				
Target	App	Member	Project			
Appendix	ABC	System	Ìď	Project Description	System Need	Estimated Cost
A in MTEP19	B>A	MDU	15746	Rebuild Beulah-Mandan 115kV and build a new 115 segment to terminate at Coyote	Age and condition of existing Beulah-Mandan 115kV line. Add Coyote terminal to retire 115kV thermal RAS at Coyote.	\$26,900,000.00
A in MTEP19	B>A	MDU	15747	Add 230/41.6kV transformer and 41.6 ring bus at Merricourt Substation. Build Merricourt-Ashley 41.6kV line and Merricourt-Fredonia 41.6kV line.	Low voltages on 41.6kV system for various contingencies	\$12,100,000.00
A in MTEP19	B>A	MDU	15780	Build new Lignite-Kincaid 60kV line	Allows Kincaid 60kV switching station to be retired	\$3,100,000.00
A in MTEP19	B>A	MDU	16124	New 115kV substation with distribution transformer on the Dickinson North-Dickinson West 115kV line	Load growth	\$7,000,000.00
A in MTEP19	B>A	MPC	15666	Reroute Center-Square Butte 230kV and Center- Roughrider 230kV around the Young 1/2 (Center) plant, adding 0.4 miles to each line.	Reroute is required to provide access to the coal pile expansion and provide space for Project Tundra (new facilities at the plant).	\$2,000,000.00
A in MTEP19	B>A	OTP	16146	New Substation delivery to the 41.6kV on the West side of Jamestown. The project will consist of - One 115kV Circuit Breaker and one 41.6kV Circuit Breaker and a 25 MVA transformer.	Improves reliability by introducing a new high voltage transmission source from a 115 to a 41.6kV transmission system.	\$3,000,000.00
A in MTEP19	B>A	OTP	16485	 This project consists of upgrades to Otter Tail Power Company's substations and transmission lines to accommodate the interconnection of two wind generators, J436 and J437, to the Big Stone South to Ellendale 345kV transmission line. Five Facility upgrades are needed: Forman to Hankinson 230kV line Forman substation Forman to Oakes 230kV line Oakes substation Oakes to Ellendale 230kV line 	Network Upgrades to the Transmission Owner's substations and transmission lines required for the interconnection of the Interconnection Customers' Projects J436 and J437.	\$1,439,902.00

		\mathbf{TO}				
Target Annendix	App ABC	Member Svstem	Project Id	Project Description	Svetem Need	Estimated Cost
A in MTEP19	B>A	OTP	16924	 This project consists of upgrades to Otter Tail Power Company's substations and transmission lines to accommodate the interconnection of a wind generator, J488, to the Big Stone South to Ellendale 345kV transmission line. Four Facility upgrades are needed: Forman to Hankinson 230kV line Forman to Oakes 230kV line Oakes to Ellendale 230kV line 	Network Upgrades to the Transmission Owner's substations and transmission lines required for the interconnection of the Interconnection Customers' Project J488.	\$2,628,468.00
A in MTEP19	B>A	OTP	17005	This project consists of upgrades to Otter Tail Power Company's Hankinson to Wahpeton 230kV transmission line to accommodate the interconnection of wind generators, J460/J488/J493/J526.	Network Upgrades to the Transmission Owner's transmission line required for the interconnection of the Interconnection Customers' Project 1460/J488/J493/J526.	\$1,596,087.00
A in MTEP19	B>A	XEL	15723	Remove 6 of the 12, 40 MVAR fast switched cap banks at Prairie. Remove 5 of 6 fast switch controls from remaining 40 MVAR cap banks	Changing transmission system no longer requires the capacitors for voltage support. High voltage conditions occur with more than 6 cap banks on. CAPX Fargo project added support to remove the need for fast switching on 5 of 6 remaining cap banks. Unnecessary costs incurred by maintaining and replacing aging capacitor banks that are no longer needed.	\$725,000.00
A in MTEP19	B>A	XEL	15737	Remove the 5, 40MVAR fast switched cap banks at Sheyenne.	CAPX Fargo project removed the need for these capacitor banks for voltage stability. Removes maintenance and replacement concerns for aging fast-switch cap banks.	\$750,000.00
B in MTEP19	В	MDU	15784	Rebuild Zahl-Corinth 60kV line	Age and Condition	\$1,700,000.00
B in MTEP19	В	MDU	15785	Rebuild Kenmare-Mohall 60kV line	Age & Condition. Low voltage on 60kV system for loss of Kenmare Substation-Kenmare West 60kV line.	\$5,300,000.00
B in MTEP19	В	MDU	15787	Build new Kenmare 60kV substation	Age & condition of existing Kenmare 60kV bus and equipment. Improve reliability and operations by replacing old breaker bypass bus with ring bus.	\$6,525,000.00

North Dakota Transmission Capacity Study Report

North Dakota Transmission Authority Power System Engineering, Inc.

ng Professionals	and Colleagues ACHIEVE Their Goals.
Forward-Thinking Profes	Helping Clients and Colle

Target Appendix	App ABC	TO Member System	Project Id	Project Description	System Need	Estimated Cost
B in MTEP19	В	MDU	15788	Replace existing 41.6/69kV transformer with a new 115/69kV transformer. Build new 115kV ring bus to replace existing 115kV main & transfer bus.	New 115/69 transformer is need to support 69kV system out of Hettinger. The existing transformer is too small, 6 MVA, to provide support to Elgin for loss of any section of the Heskett-Devaul 69kV line. The short circuit strength on the 69kV when sourced from Hettinger is weak and makes relay coordination difficult. The new 115/69 transformer will improve short circuit strength and relaying. There are not any 115 bays available for expansion on the main & transfer bus, so new ring bus will be constructed.	\$6,900,000.00
B in MTEP19	В	OTP	15728	New 41.6 cap bank (1x3 Mvar) will be installed at OTP's Abercrombie 41.6kV Substation.	Studies have shown due to existing load and load growth this 41.6kV cap bank are needed for voltage support.	\$1,000,000.00
B in MTEP19	В	OTP	16284	Reconductor 7 miles with new 1/0RT2 conductor. Rest of the line will stay with 266R conductor.	Age and condition of 7 miles between Buffalo- Enderlin 115kV transmission line will be reconductored. Multi-year project being done for reliability.	\$4,000,000.00
B in MTEP19	В	OTP	16285	Due to reliability OTP will reconductor 2 miles with new 1/0RT2 conductor.	Age and condition of 2 miles between Gackle to Streeter 41.6kV transmission line will be reconductored.	\$600,000.00
			Ta	Table B-7: MISO MTEP Appendix A Projects (Quarterly Status Report)	iarterly Status Report)	

Target	TO Member		Facility			MTEP18	MTEP18
Appendix	System	Proj. ID	Type	Description	Plan Status	Expected ISD	Estimated Cost
A in MTEP18	NDM	15184	BUS	Terminate Bowman 230kV line into new bay at Hettinger 230kV substation, add a new breaker and remove one old	In-Service	8/31/2018	\$815,032
		_	_	DICAKET			
A in MTEP12	GRE	11563	SUB	Install 115kV ring bus at McHenry 115/230kV substation.	In-Service	9/20/2018	\$4,952,173
A in MTEP11	NDM	2220	ΤX	Ellendale Substation, Transformer 345/230, Line Reactor	In-Service	3/31/2019	\$22,000,000
A in MTEP11	MDU, OTP	2220	ΓN	Big Stone South – Ellendale 345kV Line	In-Service	3/31/2019	\$225,000,000
A in MTEP12	XEL	3797	ΓN	New 5 mile Maple River – Reed River 115kV line	Under Construction	5/31/2019	\$13,900,000
A in MTEP12	XEL	3797	SUB	New Red River 115kV substation and Termination Work	Under Construction	5/31/2019	\$3,800,000

North Dakota Transmission Authority Power System Engineering, Inc.

North Dakota Transmission Capacity Study Report

36

Target	TO Member		Facility			MTEP18	MTEP18
Appendix	System	Proj. ID	Type	Description	Plan Status	Expected ISD	Estimated Cost
A in MTEP12	XEL	3797	SUB	New Maple River 115kV substation and Termination Work	Under Construction	5/31/2019	\$3,199,014
A in MTEP18	MDU	13869	SUB	115kV three breaker ring bus and 115/69kV transformer	Planned	12/31/2019	\$4,720,000
A in MTEP18	MP	15144	CAP	Existing cap bank relocated from Bison to Square Butte East	Planned	8/24/2018	\$150,000
A in MTEP18	OTP	15165	XT	New 10 MVA 115/12.5kV transformer	Planned	7/15/2018	\$243,000
A in MTEP18	OTP	15165	SUB	Modifications to the Mapleton 115/41.6kV substation	Planned	7/15/2018	\$955,700
A in MTEP17	MDU	12787	LINE	A radial 230kV line from WAPA Watford City to MDU Watford City	Planned	1/31/2018	\$200,000
A in MTEP17	MDU	12787	SUB	A new 230/34.5kV substation with a 42 MVA 230/34.5kV transformer	Planned	6/30/2019	\$3,300,000
A in MTEP17	XEL	12013	Dist	Install a third Distribution Transformer to accommodate increasing demand in the area	Planned	6/30/2019	\$400,000
A in MTEP16	MDU	9120	LN	New Ellendale Jct-Leola Jct 115kV line	Planned	12/15/2018	\$8,830,000
A in MTEP14	MDU	3083	CB	Complete North Dickinson bus	Planned	9/30/2019	\$1,500,000
A in MTEP14	MDU	3083	LN	New line Segment	Planned	12/31/2017	\$750,000
A in MTEP14	ОТР	4444	LNup	Verify and remediate facilities as required due to the industry- wide NERC alert	Planned	12/31/2019	\$7,701,028

Table B-8: SPP STEP 2019 Q1 Projects

		Project			Current Cost
PID	UID	Owner	Project Name	Upgrade Name	Estimate
30943	51306	BEPC	Multi - AVS - Charlie Creek 345kV	AVS - Charlie Creek 345kV Ckt 2	\$65,407,395
30943	51307	BEPC	Multi - AVS - Charlie Creek 345kV	AVS 345kV Substation	\$6,121,210
30943	30943 51308	BEPC	Multi - AVS - Charlie Creek 345kV	Charlie Creek 345kV Substation	\$11,268,556
30944	30944 51310 BEPC		Multi - Charlie Creek - Judson - Williston 345/230kV	Charlie Creek - Judson 345kV Ckt 1	\$71,704,347
30944	30944 51311	BEPC	Multi - Charlie Creek - Judson - Williston 345/230kV	Judson 345/230kV Substation	\$24,758,086
30944	30944 51312	BEPC	Multi - Charlie Creek - Judson - Williston 345/230kV	Judson - Williston 230kV Ckt 1	\$3,159,903
30945	30945 51314	BEPC	Multi - Judson - Tande - Neset 345/230kV	Judson - Tande 345kV Ckt 1	\$66,207,772
30945	30945 51315	BEPC	Multi - Judson - Tande - Neset 345/230kV	Tande 345/230kV Substation	\$18,000,000
30945	51316	BEPC	Multi - Judson - Tande - Neset 345/230kV	Neset - Tande 230kV Ckt 1	\$364,982
30945	51317	BEPC	Multi - Judson - Tande - Neset 345/230kV	Neset 230kV Terminal Upgrades	\$4,000,000
			Multi - Kummer Ridge - Roundup 345kV New Line and Patent Gate		
31031	51503	BEPC	and Roundup 345/115kV Substations	Roundup 345/115kV Transformer	\$6,662,000
			Multi - Kummer Ridge - Roundup 345kV New Line and Patent Gate		
31031	31031 51504 BEPC	BEPC	and Roundup 345/115kV Substations	Patent Gate 345/115kV Transformer	\$6,662,000
31032	31032 51506	BEPC	Multi - Plaza 115kV Substation and Blaisdell - Plaza 115kV New Line	Plaza 115kV Substation	\$3,918,000
31032	31032 51507	BEPC	Multi - Plaza 115kV Substation and Blaisdell - Plaza 115kV New Line	Blaisdell - Plaza 115kV New Line	\$14,841,308

North Dakota Transmission Authority Power System Engineering, Inc.

37

North Dakota Transmission Capacity Study Report

PIDUIDOwnerProject Name3103251508BEPCMulti - Plaza 115kV Substation and Blaisdell - Plaza 115kV New Line3103351509BEPCLine - Berthold - Southwest Minot 115kV Ckt 1 Reconductor3103151543BEPCand Roundup 345/L15kV Substations3103151544BEPCand Roundup 345/L15kV Substations3103151544BEPCand Roundup 345/L15kV Substations3103151544BEPCand Roundup 345/L15kV Substations4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades5127872005WAPASub - Bismarck 115kV and North Bismarck 115kV Terminal5127872005WAPALincrades		Current Cost
aza 115kV Substation and Blaisdell thold - Southwest Minot 115kV Ck immer Ridge - Roundup 345kV Ne- dup 345/115kV Substations immer Ridge - Roundup 345kV Ne- dup 345/115kV Substations liston 115kV w East Ruthville - SW Minot 115kV w East Ruthville - SW Minot 115kV marck 115kV and North Bismarck 1 narck 115kV and North Bismarck 1	Project Name Upgrade Name	Estimate
3103351509BEPCLine - Berthold - Southwest Minot 115kV Ckt 1 Reconductor3103151543BEPCMulti - Kummer Ridge - Roundup 345kV New Line and Patent Gate3103151544BEPCand Roundup 345/115kV Substations3103151544BEPCand Roundup 345/115kV Substations4122061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades512787006WAPASub - Bismarck 115kV and North Bismarck 115kV Terminal512787006WAPASub - Bismarck 115kV and North Bismarck 115kV Terminal	ion and Blaisdell - Plaza 115kV New Line Plaza 115kV Cap Bank	\$283,000
Multi - Kummer Ridge - Roundup 345kV New Line and Patent Gate3103151543BEPCand Roundup 345/115kV Substations3103151544BEPCMulti - Kummer Ridge - Roundup 345kV New Line and Patent Gate3103151544BEPCand Roundup 345/115kV Substations4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades512787006WAPASub - Bismarck 115kV and North Bismarck 115kV Terminal512787006WAPAIhorades	Minot 115kV Ckt 1 Reconductor Berthold - Southwest Minot 115kV Ckt 1 Reconductor	\$2,876,720
3103151543BEPCand Roundup 345/115kV Substations3103151544BEPCMulti - Kummer Ridge - Roundup 345kV New Line and Patent Gate3103151544BEPCand Roundup 345/115kV Substations4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades5127872006WAPAUnorrades5127872006WAPAUnorrades	undup 345kV New Line and Patent Gate	
Multi - Kummer Ridge - Roundup 345kV New Line and Patent Gate3103151544BEPCand Roundup 345/115kV Substations4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005WAPASub - Bismarck 115kV and North Bismarck 115kV Terminal5127877006WAPAIhorades5127877006WAPAIhorades	Ibstations Patent Gate 345kV Substation	\$30,000,000
3103151544BEPCand Roundup 345/115kV Substations4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades5127872006WAPAUnorrades	undup 345kV New Line and Patent Gate	
4120061856WAPASub - Williston 115kV4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line5127872005CPECUpgrades5127872005CPECUpgrades5127872006WAPAIhorrades	bstations Roundup 345kV Substation	\$27,100,000
4122361894CPECLine - New East Ruthville - SW Minot 115kV New Line4122361895CPECLine - New East Ruthville - SW Minot 115kV New Line8Sub - Bismarck 115kV and North Bismarck 115kV Terminal5127872005CPEC8Upgrades5137872006WAPA71006WAPAIIncredes	Williston 115kV Terminal Upgrades	\$5,000
41223 61895 CPEC Line - New East Ruthville - SW Minot 115kV New Line 51278 72005 CPEC Upgrades 51278 72006 WaPA Ilhorrades	SW Minot 115kV New Line East Ruthville - SW Minot 115kV New Line	\$20,746,000
51278 72005 CPEC Upgrades 51378 72006 WAPA Ilhorades	SW Minot 115kV New Line East Ruthville - SW Minot 115kV line Terminal Upgrades	\$1,035,000
51278 72005 CPEC Upgrades 51278 72006 Sub - Bismarck 115kV and North Bismarck 115kV Terminal 51378 72006 WAPA	North Bismarck 115kV Terminal	
Sub - Bismarck 115kV and North Bismarck 115kV Terminal WAPA IIncredes	North Bismarck 115kV Terminal Upgrades	\$0
51278 22006 WAPA I IIngrades	North Bismarck 115kV Terminal	
21210 12000 11111 $Opginges$	Bismarck 115kV Terminal Upgrades	\$90,000

Appendix C. Tie Line Facilities

Table C-9: SPP Defined NDEX Tie Lines

Alexandria - Riverview Rd 345kV
Audubon - Hubbard 230kV
Big Stone - Blair 230kV
Bison - Maurine 230kV
Broadland - Huron 230kV
Big Stone South - Brooking County 345kV
Canby - Granite Falls 115kV
Cass Lake - Zemple 230kV
Drayton - Letellier 230kV
Edgeley - Ordway 115kV
Ellendale - Aberdeen Junction 115kV
Forman - Summit 115kV
Forman - Roberts County 115kV
Hudson - Douglas County 115kV
Inman - Wing River 230kV
Kerkhoven - Kerkhoven Tap 115kV
LaPorte - Akeley 115kV
Leland Olds - Ft. Thompson 345kV
Leland Olds - Groton 345kV
Morris - Granite Falls 230kV
Rugby - Peace Garden 230kV
Rugby - Rollette 230kV
Sulley Butte - Oahe 230kV

Table C-10: BEPC Defined North DakotaTie Lines

Tioga - Boundary Dam 230kV
Larson - Boundary Dam 230kV
Drayton - Letellier 230kV
Rugby - Glenboro 230kV
Peace Garden - Glenboro 230kV
Peace Garden - Rolette 230kV
Glenboro - Glenboro Phase Shifter 230kV
Drayton - Donaldson 115kV
Bowesmont - Drayton Sugar 69kV
Grand Forks - Falconer 115kV
Prairie - Winger 230kV
Maple River - Winger 230kV
Sheyenne - Audubon 230kV
Moorhead - Morris 230kV
Alexandria - Bison 345kV
Wahpeton - Fergus Falls 230kV

North Dakota Transmission Authority Power System Engineering, Inc.

Table C-11: BEPC Defined Williston Pocket Tie Lines

Tioga - Boundary Dam 230kV
Blaisdell - Logan 230kV
SW Minot - Berthold 115kV
Snake Creek - Garrison 115kV
Poplar - Wolf Point 115kV
Fairview - Richland 115kV
Charlie Creek - Patent Gate 345kV
Watford - Charlie Creek 230kV
Roundup - Kummer Ridge 345kV
Oakdale - Killdeer 345kV

Appendix D. Monthly On- and Off-Peak MLC/MCC

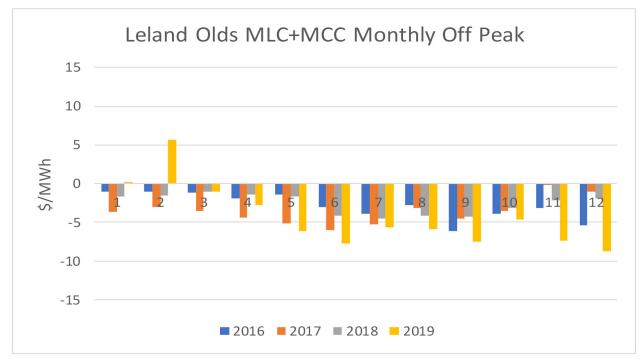


Figure D-1: Leland Olds MLC/MCC Monthly Off-Peak

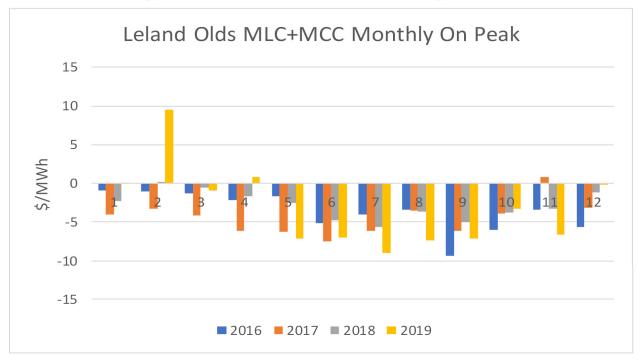
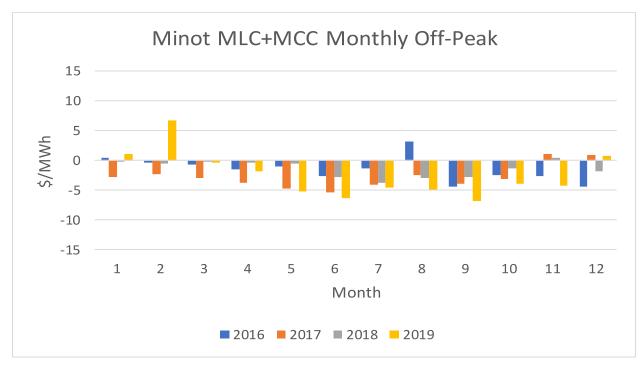



Figure D-2: Leland Olds MLC/MCC Monthly On-Peak

Figure D-3: Minot MLC/MCC Monthly Off-Peak

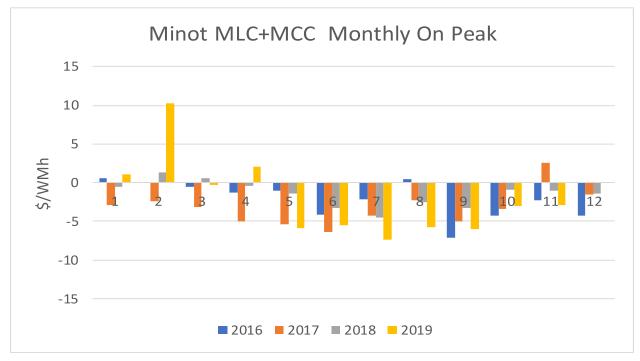
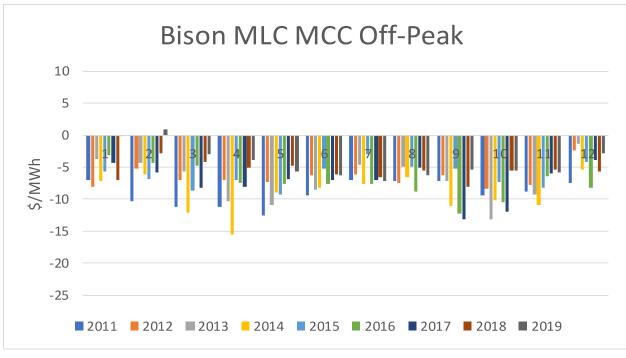
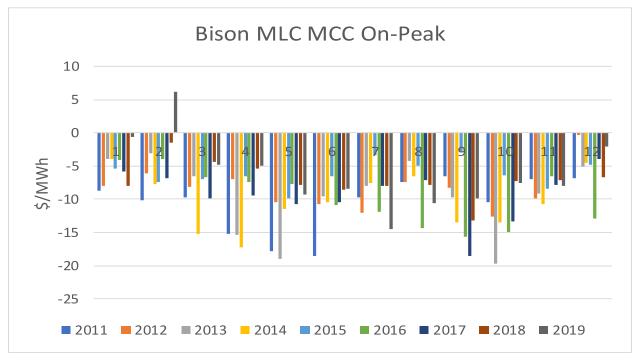
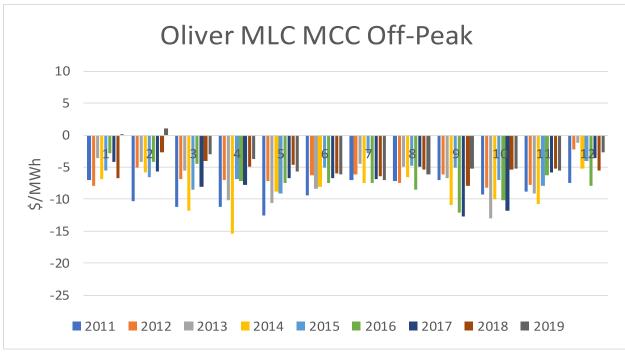
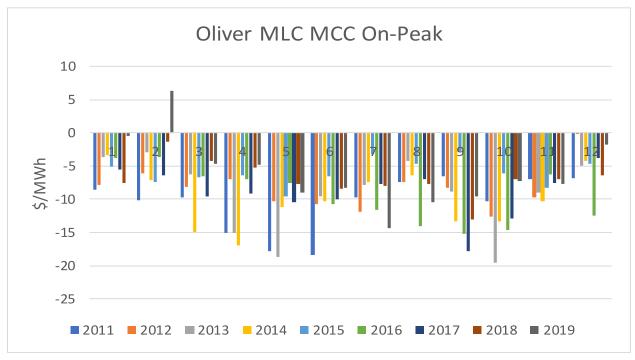
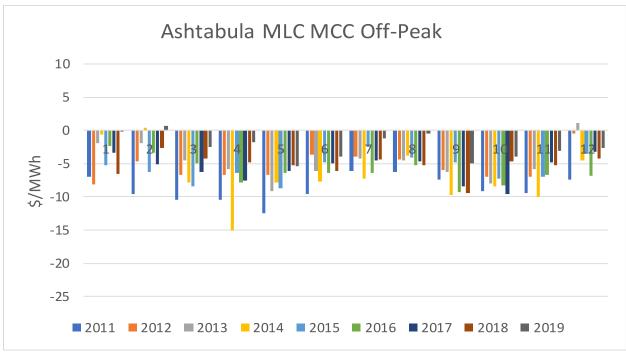
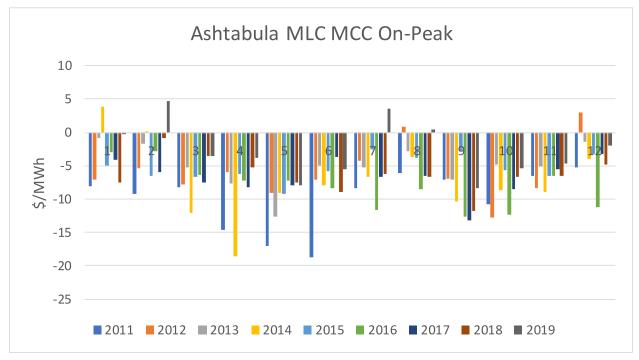



Figure D-4: Minot MLC/MCC Monthly On-Peak

Figure D-5: Bison MLC/MCC Off-Peak


Figure D-6: Bison MLC/MCC On-Peak


Figure D-7: Oliver MLC/MCC Off-Peak

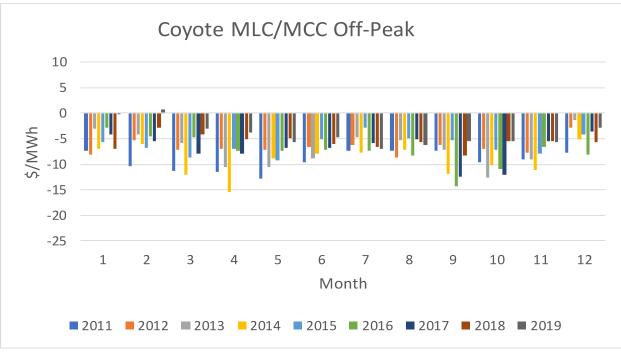

Figure D-8: Oliver MLC/MCC On-Peak

Figure D-9: Ashtabula MLC/MCC Off-Peak

Figure D-10: Ashtabula MLC/MCC On-Peak

Figure D-11: Coyote MLC/MCC Off-Peak

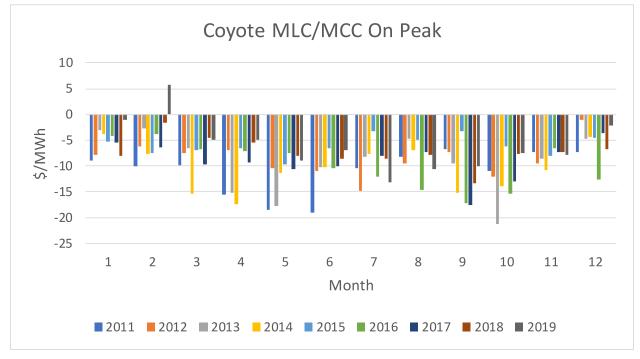
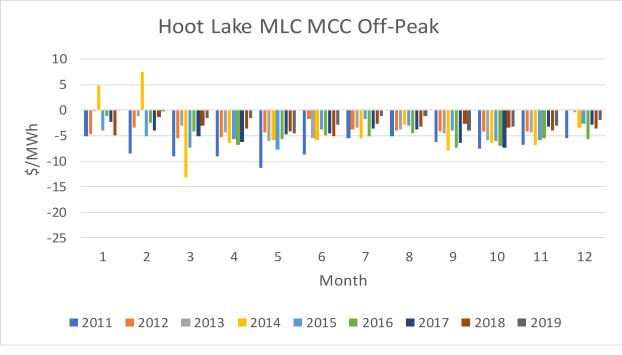



Figure D-12: Coyote MLC/MCC On-Peak

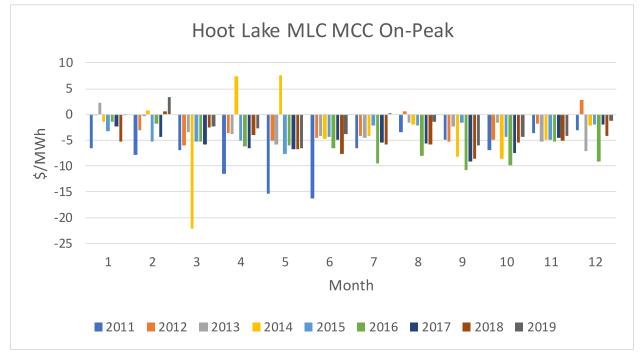
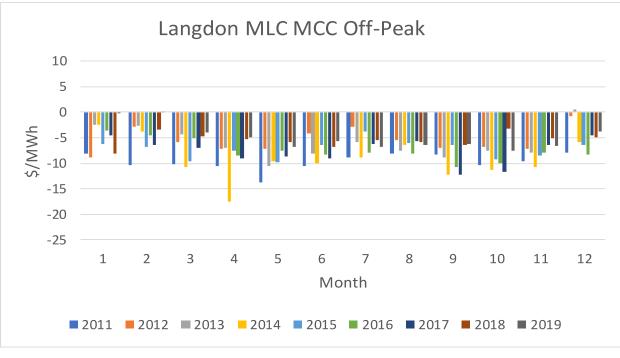
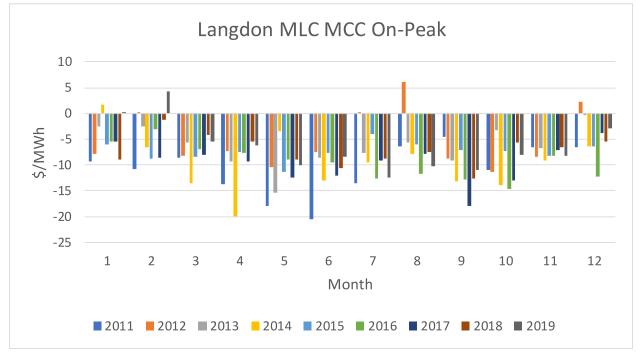




Figure D-14: Hoot Lake MLC/MCC On-Peak

Figure D-15: Langdon MLC/MCC Off-Peak

Figure D-16: Langdon MLC/MCC On-Peak

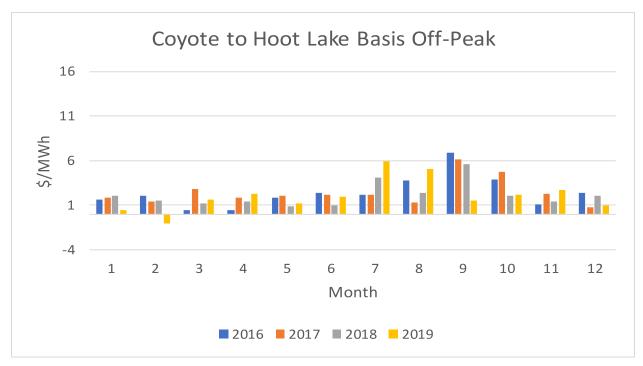


Figure D-17: Coyote to Hoot Lake Basis Off-Peak

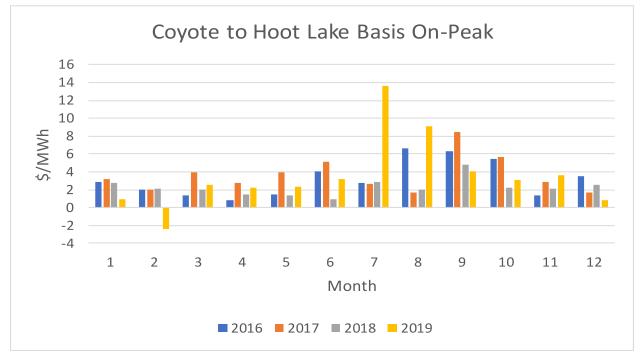


Figure D-18: Coyote to Hoot Lake Basis On-Peak

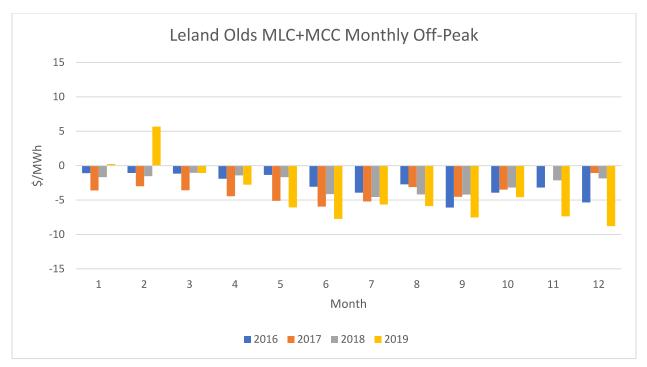


Figure D-19: Leland Olds MLC+MCC Monthly Off-Peak

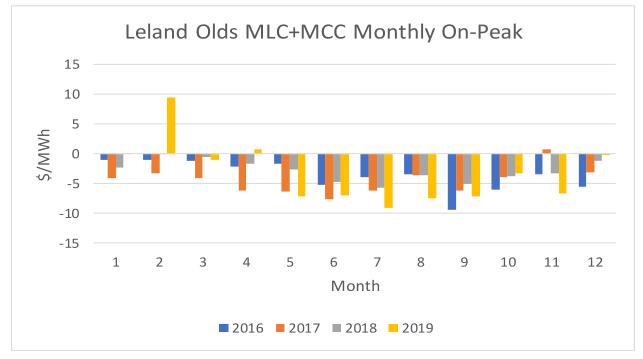
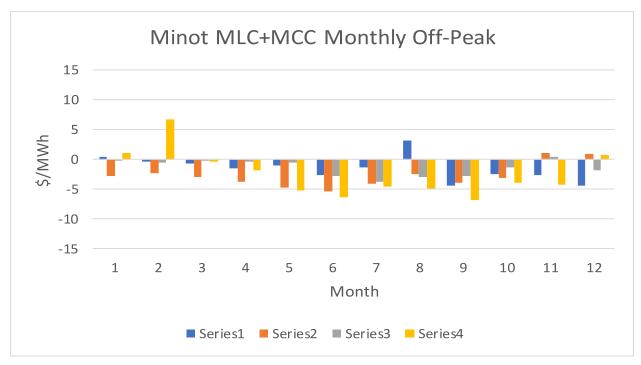
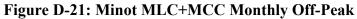




Figure D-20: Leland Olds MLC+MCC Monthly On-Peak

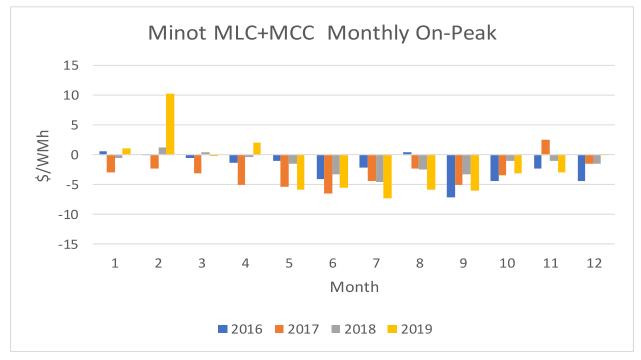


Figure D-22: Minot MLC+MCC Monthly On-Peak

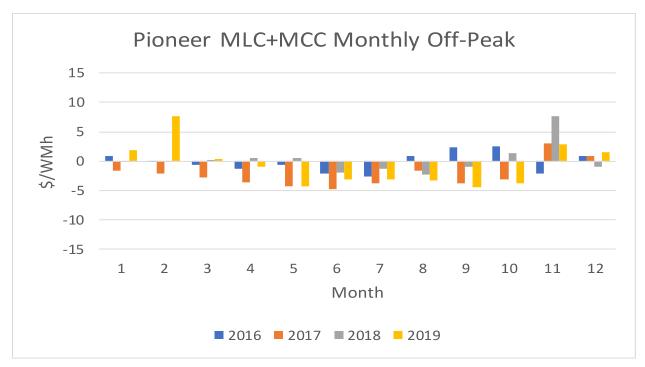


Figure D-23: Pioneer MLC+MCC Monthly Off-Peak

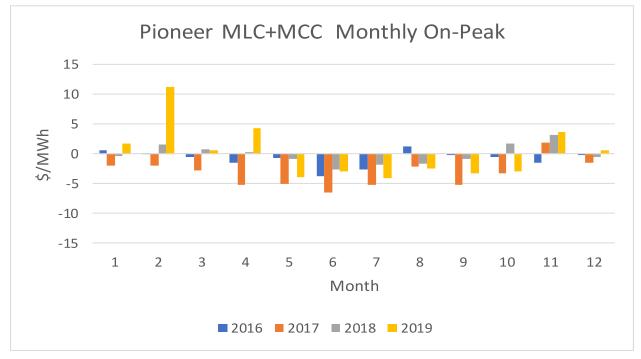


Figure D-24: Pioneer MLC+MCC Monthly On-Peak

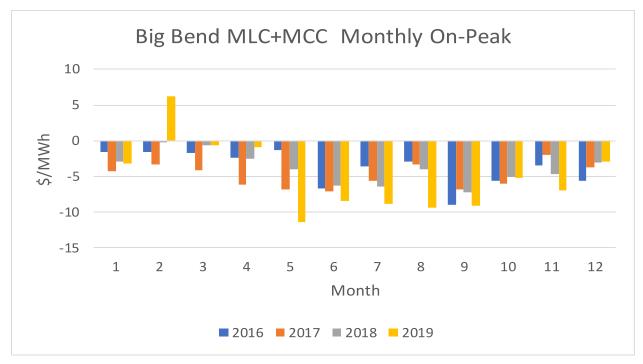


Figure D-25: Big Bend MLC+MCC Monthly On-Peak

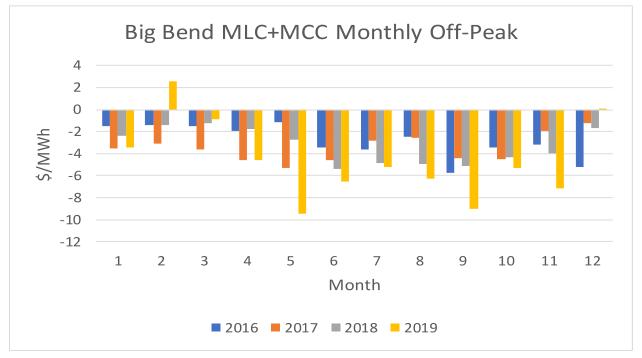


Figure D-26: Big Bend MLC+MCC Monthly Off-Peak

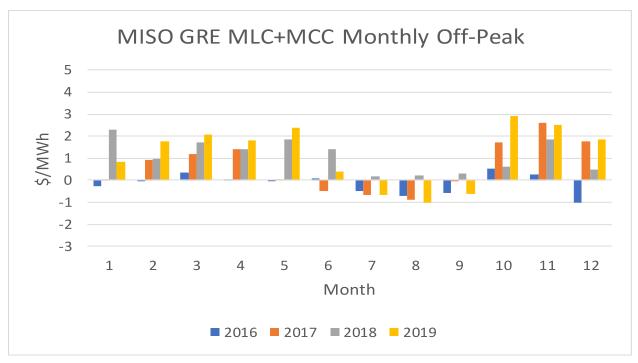


Figure D-27: MISO GRE MLC+MCC Monthly Off-Peak

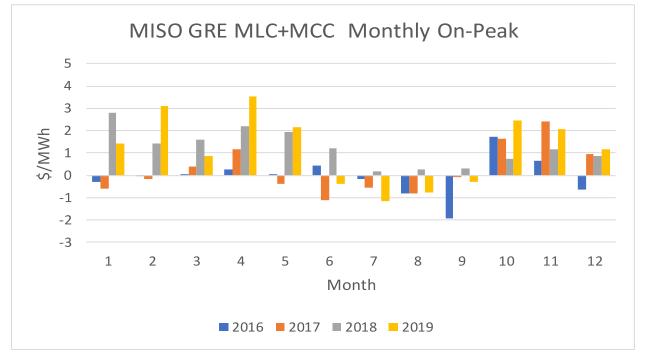


Figure D-28: MISO GRE MLC+MCC Monthly On-Peak